精英家教网 > 高中数学 > 题目详情
设A={x∈Z|-1≤x≤1},B={0,1,2},C={a|f(x)=x4+ax3+1}为偶函数,求:
(1)A∩(B∪C); 
 (2)B∩∁A(B∩C).
考点:交、并、补集的混合运算
专题:集合
分析:利用集合的交、并、补集的混合运算求解.
解答: 解:(1)∵A={x∈Z|-1≤x≤1}={-1,0,1},
B={0,1,2},C={a|f(x)=x4+ax3+1为偶函数}={0},
∴A∩(B∪C)={-1,0,1}∩{0,1,2}={0,1}. 
 (2)B∩∁A(B∩C)={0,1,2}∩{-1,1}={1}.
点评:本题考查集合的交、并、补集的混合运算,是基础题,解题时要认真审题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要得到函数y=-cos2x的图象,可以将y=sin2x的图象(  )
A、向左平移
2
B、向右平移
2
C、向左平移
4
D、向右平移
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等比数列,前n项的和为Sn,且a7=
1
64
,a2=
1
2

(Ⅰ)求{an}的通项公式及前n项的和为Sn
(Ⅱ)若bn=log2(2-Sn),数列{bn}前n项的和为Tn,求数列{
1
Tn
}(n≥2)的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足条件:对于任意的x,y∈R,f(x+y)=f(x)+f(y),
(1)求f(0)的值;       
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,离心率是
3
2
.F1,F2分别为左右焦点,点M在椭圆上且△MF1F2的周长为2
3
+4
(1)求椭圆C的标准方程;
(2)P是椭圆C上的任意一点,点E(-1,0),求|PE|的取值范围
(3)直线l过点E(-1,0)且与椭圆C交于A,B两点,若
AE
=2
EB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d的等差数列{an}中,已知a1=10,且2a1,2a2+2,5a3-1成等比数列.
(1)求d,an;     
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=loga
1-mx
x-1
(a>0且a≠1)是奇函数
(1)求m值
(2)讨论f(x)单调性
(3)若a=
1
2
,对x∈[3,4],不等式f(x)>(
1
2
x+t恒成立,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[-2,1],求函数f(x)=-(
1
4
x+4(
1
2
x+5的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点P(2,3),且被两条平行直线l1:3x+4y-7=0,l2:3x+4y+8=0截得的线段长为d.
(1)求d的最小值;
(2)当直线l与x轴平行,试求d的值.

查看答案和解析>>

同步练习册答案