精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-2
3
sin2x+sin2x+
3

(Ⅰ)求函数f(x)的最小正周期和单调增区间;
(Ⅱ)在给出的直角坐标系中,画出函数y=f(x)在区间[0,π]上的图象.
考点:三角函数中的恒等变换应用,五点法作函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的图象变换
专题:
分析:(1)先利用三角恒等变换公式对函数的解析式进行化简,用二倍角公式和两个角的和的正弦公式,再依据化简后的解析式求三角函数的周期.
(2)在所给的区间上找出函数值域的几个特殊点:最大值和最小值点,再列出表格,在坐标系中描出点画出函数图象.
解答: 解:(1)由题意得,f(x)=
3
(1-2sin2x)+sin2x

=sin2x+
3
cos2x
=2sin(2x+
π
3
)
…(2分)
∴函数的最小正周期T=π,
-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ
(k∈Z)得,
-
12
+kπ≤x≤
π
12
+kπ
,k∈Z
所以函数f(x)的单调递增区间为[-
12
+kπ,
π
12
+kπ]
(k∈Z)…(6分)
(2)由y=2sin(2x+
π
3
)知,列表如下:
 x 0 
π
12
 
π
3
 
12
 
6
 π
 y 
3
 2 0-2 0 
3
函数y=f(x)在区间[0,π]上,图象如图:
点评:本题考查三角函数的最值,以及函数的图象的作法,解题的关键是对函数的解析式进行化简,以及熟练掌握正弦函数的性质,作三角函数函数的图象一般用五点法作图,化简函数f(x)的解析式是解题的突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是R上的增函数,设F(x)=f(x)-f(2-x).
(1)用定义证明:F(x)=f(x)-f(2-x)是R上的增函数;
(2)证明:如果x1+x2>2,则F(x1)+F(x2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
x+y≤4
y≥x
x+1≥0
画出可行域.并求z=2x-y的最大、最小值,及取最大最小值时的x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,sin(A+B)=2sin(A-B).
(1)若B=
π
6
,求A;
(2)若tanA=2,求tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点P(1,
3
2
),且离心率e=
3
2
,M(m,n)是椭圆C上的动点,直线l的方程为mx+nx=1
(1)求椭圆C的方程;
(2)直线l与圆x2+y2=b2相交于A,B两点,求|AB|的最大值;
(3)求出与直线l恒相切的定椭圆C′的方程.探究:若M(m,n)是曲线E:Ax2+By2=1(AB≠0)上的动点,是否仍存在与直线l:mx+ny=1恒相切的定曲线E′?若存在,直接写出定曲线E′的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg[a2x+2(ab)x-b2x+1](a>0,b>0),求使f(x)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
1
4
,a2=
3
4
,2an=an+1+an-1(n≥2,n∈N),数列{bn}满足:b1<0,3bn-bn-1=n(n≥2,n∈R),数列{bn}的前n项和为Sn
(Ⅰ)求证:数列{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}为递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{bn}满足b1=2,bn=
bn-1
1+bn-1
,(n≥2,n∈N+
(1)求数列{bn}的通项公式;
(2)求数列{
2n+1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

求值.
(Ⅰ)log864+3log32+(
3
-
2
0+(-
2
3
-1-(3
3
8
)
1
3

(Ⅱ)(lg5)2+2lg2-(lg2)2

查看答案和解析>>

同步练习册答案