精英家教网 > 高中数学 > 题目详情
4.某射手一次射击中,击中10环、9环、8环的概率分别是0.24,0.28,0.19,则这射手在一次射击中不够8环的概率是(  )
A.0.48B.0.52C.0.71D.0.29

分析 设一次射击中射击10环,9环、8环的事件分别为A、B、C.显然A、B、C互斥,则A+B+C为大于等于8环的事件,而小于8环这一事件与(A+B+C)为对立事件,再根据互斥事件的概率间的关系求得这次射击中射手击中不够8环的概率.

解答 解:设一次射击中射击10环,9环、8环的事件分别为A、B、C.显然A、B、C互斥,则A+B+C为大于等于8环的事件,而小于8环这一事件与(A+B+C)为对立事件,记击中不够8环的事件为D,
故P(D)=1-P(A+B+C)=1-(0.24+0.28+0.19)=1-0.71=0.29,
即这次射击中射手击中不够8环的概率为0.29.
故选:D.

点评 本题主要考查互斥事件的概率加法公式的应用,事件和它的对立事件概率之间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.化简:
(1)(${x}^{\frac{1}{3}}$+${y}^{\frac{1}{3}}$)(${x}^{\frac{2}{3}}$-${x}^{\frac{1}{3}}$${y}^{\frac{1}{3}}$+${y}^{\frac{2}{3}}$)
(2)(${a}^{\frac{4}{3}}$-8${a}^{\frac{1}{3}}$b)÷(${a}^{\frac{2}{3}}$+2$\root{3}{ab}$+4${b}^{\frac{2}{3}}$)÷(1-2$\root{3}{\frac{b}{a}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,要在山坡上A、B两处测量与地面垂直的铁塔CD的高,由A、B两处测得塔顶C的仰角分别为60°和45°,AB长为48m,斜坡与水平面成30°角,则铁塔CD的高为16$\sqrt{3}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.根据如图的算法语句,当输出y为31时,输入x的值为(  )
A.62B.61C.60D.62或60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.根据如图所示的程序框图(其中[x]表示不大于x的最大整数),输出r等于(  )
A.$\frac{7}{3}$B.2C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲、乙两位同学在几次数学测验中,各自的平均成绩都是88分,甲的方差为0.61,乙的方差为0.72,则(  )
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩好
C.甲、乙的成绩一样D.甲、乙的成绩无法比较

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}为等差数列,a1=35,d=-2,Sn=0,则n=(  )
A.33B.34C.35D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将一颗质地均匀的正方体骰子连续掷两次,先后出现的点数分别为a,b,则关于x的方程x2+ax+b=0有两个不相等的实根的概率为$\frac{17}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$且$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案