精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=ax(a>0,a≠1)的反函数的图象经过点($\frac{\sqrt{2}}{2}$,$\frac{1}{2}$).若函数g(x)的定义域为R,当x∈[-2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是(  )
A.g(π)<g(3)<g($\sqrt{2}$)B.g(π)<g($\sqrt{2}$)<g(3)C.g($\sqrt{2}$)<g(3)<g(π)D.g($\sqrt{2}$)<g(π)<g(3)

分析 根据函数的奇偶性,推导出g(-x+2)=g(x+2),再利用当x∈[-2,2]时,g(x)单调递减,即可求解.

解答 解:函数f(x)=ax(a>0,a≠1)的反函数的图象经过点($\frac{\sqrt{2}}{2}$,$\frac{1}{2}$),则a=$\frac{1}{2}$,
∵y=g(x+2)是偶函数,∴g(-x+2)=g(x+2),
∴g(3)=g(1),g(π)=f(4-π),
∵4-π<1<$\sqrt{2}$,当x∈[-2,2]时,g(x)单调递减,
∴g(4-π)>g(1)>g($\sqrt{2}$),
∴g($\sqrt{2}$)<g(3)<g(π),
故选C.

点评 本题考查反函数,考查函数单调性、奇偶性,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,a2=5,a1+a3+a4=19.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}前n项和为Sn,且Sn+$\frac{{a}_{n}-1}{{2}^{n}}$=λ(λ为常数),令cn=bn+1(n∈N*).求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在数列{an}中,已知a1=3,且数列{an+(-1)n}是公比为2的等比数列,对于任意的n∈N*,不等式a1+a2+…+an≥λan+1恒成立,则实数λ的取值范围是(  )
A.$({-∞,\frac{2}{5}}]$B.$({-∞,\frac{1}{2}}]$C.$({-∞,\frac{2}{3}}]$D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E为PC上一点,且PE=$\frac{2}{3}$PC.
(Ⅰ)求PE的长;
(Ⅱ)求证:AE⊥平面PBC;
(Ⅲ)求二面角B-AE-D的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其短轴为2,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的右焦点为F,过点G(2,0)作斜率不为0的直线交椭圆E于M,N两点,设直线FM和FN的斜率为k1,k2,试判断k1+k2是否为定值,若是定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.
(Ⅰ)若G为AD边上一点,DG=$\frac{1}{3}$DA,求证:EG∥平面BCF;
(Ⅱ)求二面角E-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,若输入a,b,c分别为1,2,0.3,则输出的结果为(  )
A.1.125B.1.25C.1.3125D.1.375

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1536石,验得米内夹谷,抽样取米一把,数得224粒内夹谷28粒,则这批米内夹谷约为(  )
A.169石B.192石C.1367石D.1164石

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=120°,AB=PC=2,$AP=BP=\sqrt{2}$.
(Ⅰ)线段AB上是否存在点M,使AB⊥平面PCM?并给出证明.
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

同步练习册答案