1£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬Æä¶ÌÖáΪ2£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²EµÄÓÒ½¹µãΪF£¬¹ýµãG£¨2£¬0£©×÷бÂʲ»Îª0µÄÖ±Ïß½»ÍÖÔ²EÓÚM£¬NÁ½µã£¬ÉèÖ±ÏßFMºÍFNµÄбÂÊΪk1£¬k2£¬ÊÔÅжÏk1+k2ÊÇ·ñΪ¶¨Öµ£¬ÈôÊǶ¨Öµ£¬Çó³ö¸Ã¶¨Öµ£»Èô²»ÊǶ¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÐÔÖÊ2b=2£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$£¬ÇóµÃa£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©ÉèÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½£¬¼´¿ÉÇóµÃk1+k2µÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£º2b=2£¬b=1£¬
ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$£¬
Ôòa=$\sqrt{2}$£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÉèÖ±ÏßMNµÄ·½³ÌΪy=k£¨x-2£©£¨k¡Ù0£©£®
$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥yÕûÀíµÃ£º£¨1+2k2£©x2-8k2x+8k2-2=0£®ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôòx1+x2=$\frac{8{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$£¬
k1+k2=$\frac{{y}_{1}}{{x}_{1}-1}$+$\frac{{y}_{2}}{{x}_{2}-1}$=$\frac{k£¨{x}_{1}-2£©}{{x}_{1}-1}$+$\frac{k£¨{x}_{2}-2£©}{{x}_{2}-1}$=k[2-$\frac{{x}_{1}+{x}_{2}-2}{{x}_{1}{x}_{2}-£¨{x}_{1}+{x}_{2}£©+1}$]
=k[2-$\frac{\frac{8{k}^{2}}{1+2{k}^{2}}-2}{\frac{8{k}^{2}-2}{1+2{k}^{2}}-\frac{8{k}^{2}}{1+2{k}^{2}}+1}$]=0
¡àk1+k2=0Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Î¤´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÉèÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È£¬Èô$\overrightarrow{a}$=£¨3£¬-1£©£¬$\overrightarrow{b}$-$\overrightarrow{a}$=£¨-1£¬1£©£¬Ôòcos¦È=$\frac{3\sqrt{10}}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=BC=$\sqrt{6}$£¬¡ÏABC=90¡ã£¬µãDΪACµÄÖе㣬½«¡÷ABDÑØBDÕÛÆðµ½¡÷PBDµÄλÖã¬Ê¹PC=PD£¬Á¬½ÓPC£¬µÃµ½ÈýÀâ×¶P-BCD£¬Èô¸ÃÈýÀâ×¶µÄËùÓж¥µã¶¼ÔÚͬһÇòÃæÉÏ£¬Ôò¸ÃÇòµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®¦ÐB£®3¦ÐC£®5¦ÐD£®7¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬µ×ÃæABCDÊDZ߳¤Îª3$\sqrt{2}$µÄÕý·½ÐΣ¬AA1=3£¬EÊÇÏß¶ÎA1B1ÉÏÒ»µã£¬Èô¶þÃæ½ÇA-BD-EµÄÕýÇÐֵΪ3£¬ÔòÈýÀâ×¶A-A1D1EÍâ½ÓÇòµÄ±íÃæ»ýΪ35¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®É躯Êýf£¨x£©=$\frac{1}{2}$x2+alnx£¬£¨a£¼0£©£®
£¨1£©Èôº¯Êýf£¨x£©µÄͼÏóÔڵ㣨2£¬f£¨2£©£©´¦µÄÇÐÏßбÂÊΪ$\frac{1}{2}$£¬ÇóʵÊýaµÄÖµ£»
£¨2£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨3£©Éèg£¨x£©=x2-£¨1-a£©x£¬µ±a¡Ü-1ʱ£¬ÌÖÂÛf£¨x£©Óëg£¨x£©Í¼Ïó½»µãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=ax£¨a£¾0£¬a¡Ù1£©µÄ·´º¯ÊýµÄͼÏó¾­¹ýµã£¨$\frac{\sqrt{2}}{2}$£¬$\frac{1}{2}$£©£®Èôº¯Êýg£¨x£©µÄ¶¨ÒåÓòΪR£¬µ±x¡Ê[-2£¬2]ʱ£¬ÓÐg£¨x£©=f£¨x£©£¬ÇÒº¯Êýg£¨x+2£©ÎªÅ¼º¯Êý£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®g£¨¦Ð£©£¼g£¨3£©£¼g£¨$\sqrt{2}$£©B£®g£¨¦Ð£©£¼g£¨$\sqrt{2}$£©£¼g£¨3£©C£®g£¨$\sqrt{2}$£©£¼g£¨3£©£¼g£¨¦Ð£©D£®g£¨$\sqrt{2}$£©£¼g£¨¦Ð£©£¼g£¨3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔڵȱÈÊýÁÐ{an}ÖУ¬ÒÑÖªa3=6£¬a3+a5+a7=78£¬Ôòa5=£¨¡¡¡¡£©
A£®12B£®18C£®24D£®36

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ä³Ð£ÔÚÒ»´Î¸ßÈýÄê¼¶¡°Õï¶ÏÐÔ¡±²âÊԺ󣬶ԸÃÄê¼¶µÄ500Ãû¿¼ÉúµÄ³É¼¨½øÐÐͳ¼Æ·ÖÎö£¬³É¼¨µÄƵÂÊ·Ö²¼±í¼°ÆµÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬¹æ¶¨³É¼¨²»Ð¡ÓÚ130·ÖΪÓÅÐ㣮
£¨1£©ÈôÓ÷ֲã³éÑùµÄ·½·¨´ÓÕâ500ÈËÖгéÈ¡5È˵ijɼ¨½øÐзÖÎö£¬ÇóÆäÖгɼ¨ÎªÓÅÐãµÄѧÉúÈËÊý£»
£¨2£©ÔÚ£¨1£©ÖгéÈ¡µÄ5ÃûѧÉúÖУ¬ÒªËæ»ú³éÈ¡2ÃûѧÉú²Î¼Ó·ÖÎö×ù̸»á£¬ÇóÇ¡ÓÐ1È˳ɼ¨ÎªÓÅÐãµÄ¸ÅÂÊ£®
Çø¼äÈËÊý
[115£¬120£©25
[120£¬125£©a
[125£¬130£©175
[130£¬135£©150
[135£¬140£©b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®µãPΪÕýËÄÃæÌåABCDµÄÀâBCÉÏÈÎÒâÒ»µã£¬ÔòÖ±ÏßAPÓëÖ±ÏßDCËù³É½ÇµÄ·¶Î§ÊÇ$[\frac{¦Ð}{3}£¬\frac{¦Ð}{2}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸