精英家教网 > 高中数学 > 题目详情
13.在等比数列{an}中,已知a3=6,a3+a5+a7=78,则a5=(  )
A.12B.18C.24D.36

分析 设公比为q,由题意求出公比,再根据等比数列的性质即可求出.

解答 解:设公比为q,
∵a3=6,a3+a5+a7=78,
∴a3+a3q2+a3q4=78,
∴6+6q2+6q4=78,
解得q2=3
∴a5=a3q2=6×3=18,
故选:B

点评 本题考查了等比数列的性质,考查了学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图所示,给出下列条件:
①∠B=∠ACD;
②∠ADC=∠ACB;
③$\frac{AC}{CD}$=$\frac{AB}{BC}$;
④AC2=AD•AB.
其中能够单独判定△ABC∽△ACD的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,左、右焦点分别是F1、F2,在椭圆E上有一动点A,过A、F1作一个平行四边形,使顶点A、B、C、D都在椭圆E上,如图所示.
(Ⅰ) 判断四边形ABCD能否为菱形,并说明理由.
(Ⅱ) 当四边形ABCD的面积取到最大值时,判断四边形ABCD的形状,并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其短轴为2,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的右焦点为F,过点G(2,0)作斜率不为0的直线交椭圆E于M,N两点,设直线FM和FN的斜率为k1,k2,试判断k1+k2是否为定值,若是定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在二项式(ax2+$\frac{1}{\sqrt{x}}$)5的展开式中,若常数项为-10,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,若输入a,b,c分别为1,2,0.3,则输出的结果为(  )
A.1.125B.1.25C.1.3125D.1.375

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期七
车流量x(万辆)1234567
PM2.5的浓度y(微克/立方米)28303541495662
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2. 如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(Ⅰ)若M为PA的中点,求证:AC∥平面MDE;
(Ⅱ)若PB与平面ABCD所成角为45°,求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=8x,直线l:y=$\frac{{\sqrt{3}}}{3}$(x-2),直线l交C于A,B两点,则|AB|等于(  )
A.16B.$16\sqrt{3}$C.32D.$32\sqrt{3}$

查看答案和解析>>

同步练习册答案