精英家教网 > 高中数学 > 题目详情
10.某校在一次高三年级“诊断性”测试后,对该年级的500名考生的成绩进行统计分析,成绩的频率分布表及频率分布直方图如图所示,规定成绩不小于130分为优秀.
(1)若用分层抽样的方法从这500人中抽取5人的成绩进行分析,求其中成绩为优秀的学生人数;
(2)在(1)中抽取的5名学生中,要随机抽取2名学生参加分析座谈会,求恰有1人成绩为优秀的概率.
区间人数
[115,120)25
[120,125)a
[125,130)175
[130,135)150
[135,140)b

分析 (1)由频率分布直方图先求出成绩不小于130分为优秀,则成绩为优秀的频率,用分层抽样的方法从这500人中抽取5人的成绩进行分析,能求出成绩为优秀的学生人数.
(2)抽取的5名学生中,成绩为优秀的学生人数为2人,要随机抽取2名学生参加分析座谈会,基本事件总数n=${C}_{5}^{2}$=10,恰有1人成绩为优秀包含的基本事件个数m=${C}_{2}^{1}{C}_{3}^{1}$=6,同由此能过河卒子 同恰有1人成绩为优秀的概率.

解答 解:(1)由频率分布直方图知:
成绩不小于130分为优秀,则成绩为优秀的频率为:(0.06+0.02)×5=0.4,
∴用分层抽样的方法从这500人中抽取5人的成绩进行分析,
其中成绩为优秀的学生人数为:5×0.4=2人.
(2)在(1)中抽取的5名学生中,成绩为优秀的学生人数为2人,
要随机抽取2名学生参加分析座谈会,
基本事件总数n=${C}_{5}^{2}$=10,
恰有1人成绩为优秀包含的基本事件个数m=${C}_{2}^{1}{C}_{3}^{1}$=6,
∴恰有1人成绩为优秀的概率p=$\frac{m}{n}=\frac{6}{10}=0.6$.

点评 本题考查频率分布直方图、分层抽样的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.现有6名高职学生到某公司A、B、C、D、E五个岗位实习,每个岗位至少有一名学生,则学生小王和小李恰好被安排在岗位A实习的概率是$\frac{1}{75}$(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其短轴为2,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的右焦点为F,过点G(2,0)作斜率不为0的直线交椭圆E于M,N两点,设直线FM和FN的斜率为k1,k2,试判断k1+k2是否为定值,若是定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,若输入a,b,c分别为1,2,0.3,则输出的结果为(  )
A.1.125B.1.25C.1.3125D.1.375

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期七
车流量x(万辆)1234567
PM2.5的浓度y(微克/立方米)28303541495662
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1536石,验得米内夹谷,抽样取米一把,数得224粒内夹谷28粒,则这批米内夹谷约为(  )
A.169石B.192石C.1367石D.1164石

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2. 如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(Ⅰ)若M为PA的中点,求证:AC∥平面MDE;
(Ⅱ)若PB与平面ABCD所成角为45°,求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.现有1000根某品种的棉花纤维,从中随机抽取50根,纤维长度(单位:mm)的数据分组及各组的频数如表,据此估计这1000根中纤维长度不小于37.5mm的根数是180.
纤维长度频数
[22.5,25.5)3
[25.5,28.5)8
[28.5,31.5)9
[31.5,34.5)11
[34.5,37.5)10
[37.5,40.5)5
[40.5,43.5]4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{5π}{9}$)的值是(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案