精英家教网 > 高中数学 > 题目详情
20.设x0为函数f(x)=2x+x-2的零点,且x0∈(m,n),其中m,n为相邻的整数,则m+n=1.

分析 通过f(0)<0,f(1)>0,可得 f(0)•f(1)<0,故函数f(x)=2x+x-2的零点在区间(0,1)内,由此可得k的值,

解答 解:函数f(x)=2x+x-2的零点为x0,且x0∈(m,n),f(0)=1+0-2=-1<0; f(1)=2+1-2=1>0,
∴f(0)•f(1)<0,故函数f(x)=2x+x-2的零点在区间(0,1)内,故m=0,n=1,
m+n=1.
故答案为:1.

点评 本题主要考查函数的零点的判定定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知a,b,c为实数,且a+b+c=2m-2,a2+$\frac{1}{4}$b2+$\frac{1}{9}$c2=1-m.
(1)求证:a2+$\frac{1}{4}$b2+$\frac{1}{9}$c2≥$\frac{(a+b+c)^{2}}{14}$;
(2)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sin|ωx|,若y=f(x)与y=m(m为常数)图象的公共点中,相邻两个公共点的距离的最大值为2π,则ω的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)={log_{\frac{1}{2}}}({x^2}-4x)$的单调递增区间是(  )
A.(2,+∞)B.(-∞,0)C.(4,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四个说法:
①a∥α,b?α,则a∥b;
②a∩α=P,b?α,则a与b不平行;
③a?α,则a∥α;
④a∥α,b∥α,则a∥b.
其中错误的说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设23-2x<23x-4,则x的取值范围是x>$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数y=f(x)是函数y=3x的反函数,则f($\frac{1}{2}$)的值为-log32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
(1)求a,b的值;
(2)求证:f′(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线x-y+2=0与圆x2+y2=3交于A,B两点,则弦AB的长等于2.

查看答案和解析>>

同步练习册答案