精英家教网 > 高中数学 > 题目详情
15.下列四个说法:
①a∥α,b?α,则a∥b;
②a∩α=P,b?α,则a与b不平行;
③a?α,则a∥α;
④a∥α,b∥α,则a∥b.
其中错误的说法的个数是(  )
A.1B.2C.3D.4

分析 根据直线与直线的位置关系,直线与平面的位置关系,逐一分析四个结论的真假,可得答案.

解答 解:①a∥α,b?α,则a与b可能平行,也可能异面,故①错误;
②a∩α=P,b?α,则a与b可能相交,也可能异面,但不平行,故②正确;
③a?α,则a与α可能平行,可能相交,故③错误;
④a∥α,b∥α,则a与b可能平行,可能相交,也可能异面,故④错误.
故选:C.

点评 本题以命题的真假判断与应用为载体,考查了直线与直线的位置关系,直线与平面的位置关系等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.直线l与直线m:3x-y+2=0关于x轴对称,则这两直线与y轴围成的三角形的面积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{a{x}^{3}}{3}$+$\frac{a{x}^{2}}{2}$-2ax+2a+1的图象经过四个象限,则实数a的取值范围是(  )
A.(-$\frac{6}{5}$,$\frac{3}{16}$)B.(-$\frac{8}{5}$,-$\frac{3}{16}$)C.(-$\frac{8}{5}$,-$\frac{1}{16}$)D.(-$\frac{6}{5}$,-$\frac{3}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得最小值m-1(m≠0).设f(x)=$\frac{g(x)}{x}$.
(1)求二次函数y=g(x)的解析式(假设m为已知常数);
(2)若曲线y=f(x)上的点P[到点Q(0,2)的距离的最小值为$\sqrt{2}$,求m的值;
(3)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若偶函数f(x)对定义域内任意x都有f(x+2)=-f(x),且当x∈(0,1]时,f(x)=log2x,则$f({\frac{15}{2}})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设x0为函数f(x)=2x+x-2的零点,且x0∈(m,n),其中m,n为相邻的整数,则m+n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.化简$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}$的结果是(  )
A.1B.sinαC.-tanαD.tanα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(2x+1)(x-1)5的展开式中含x3项的系数是-10(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.命题“?x∈R,x2+1≥x”的否定是?x∈R,x2+1<x.

查看答案和解析>>

同步练习册答案