精英家教网 > 高中数学 > 题目详情
5.命题“?x∈R,x2+1≥x”的否定是?x∈R,x2+1<x.

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以,命题“?x∈R,x2+1≥x”的否定是:?x∈R,x2+1<x.
故答案为:?x∈R,x2+1<x

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列四个说法:
①a∥α,b?α,则a∥b;
②a∩α=P,b?α,则a与b不平行;
③a?α,则a∥α;
④a∥α,b∥α,则a∥b.
其中错误的说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C:$\frac{x^2}{m}-\frac{y^2}{n}$=1,曲线f(x)=ex在点(0,2)处的切线方程为2mx-ny+2=0,则该双曲线的渐近线方程为(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知矩形ABCD中,AB=3,BC=1,M,N分别为包含端点的边BC,CD上的动点,且满足|$\overrightarrow{BM}$||$\overrightarrow{CD}$|=|$\overrightarrow{BC}$||$\overrightarrow{CN}$|,则$\overrightarrow{AM}$•$\overrightarrow{MN}$的最小值是(  )
A.-7B.-10C.-8D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C的对边分别为a,b,c,若sinA+sinC=$\sqrt{2}$sinB,则△ABC中最大角的度数等于(  )
A.90°B.75°C.135°D.105°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线x-y+2=0与圆x2+y2=3交于A,B两点,则弦AB的长等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l:x-2y+4=0与点P(2,1),分别写出满足下列条件的直线方程:
(1)过点P且与直线l平行;
(2)过点P且与直线l垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若“x2+2x-3>0”是“x<a”的必要不充分条件,则实数a的最大值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}=(1,x),\overrightarrow{b}=(x,3)$,若$\overrightarrow{a}∕∕\overrightarrow{b}$,则$\left|\overrightarrow{a}\right|$等于2.

查看答案和解析>>

同步练习册答案