精英家教网 > 高中数学 > 题目详情
6.函数f(x)=$\frac{a{x}^{3}}{3}$+$\frac{a{x}^{2}}{2}$-2ax+2a+1的图象经过四个象限,则实数a的取值范围是(  )
A.(-$\frac{6}{5}$,$\frac{3}{16}$)B.(-$\frac{8}{5}$,-$\frac{3}{16}$)C.(-$\frac{8}{5}$,-$\frac{1}{16}$)D.(-$\frac{6}{5}$,-$\frac{3}{16}$)

分析 先求导函数,利用导数求函数的最值,利用最值异号可以求解.

解答 解:∵f′(x)=ax2+ax-2a=a(x-1)(x+2).
若a<0,
则当x<-2或x>1时,f′(x)<0,
当-2<x<1时,f′(x)>0,
从而有f(-2)<0,且f(1)>0,
即:$\left\{\begin{array}{l}{-8a+24a+3<0}\\{\frac{1}{3}a+\frac{1}{2}a+1>0}\end{array}\right.$,
∴-$\frac{6}{5}$<a<-$\frac{3}{16}$,
若a>0,
则当x<-2或x>1时,f′(x)>0,
当-2<x<1时,f′(x)<0,
从而有f(-2)>0,且f(1)<0,无解,
综合以上:-$\frac{6}{5}$<a<-$\frac{3}{16}$.
故选D.

点评 本题主要考查三次函数的图象,利用导数求函数的最值可以解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.五种不同商品在货架上排成一排,其中A,B两种必须连排,而C,D两种不能连排,则不同的排法共有(  )
A.48种B.24种C.20种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)的图象如图所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若关于x的不等式x2+(a-1)x+1<0有解,则实数a的取值范围是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个几何体的三视图如图所示(单位:m),则该几何体的表面积为$55+4\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sin|ωx|,若y=f(x)与y=m(m为常数)图象的公共点中,相邻两个公共点的距离的最大值为2π,则ω的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等比数列{an}满足an>0,n=1,2,…,且a2•an-1=2(n≥2),则当n≥2时,log2a1+log2a2+log2a3+log2a4+…+log2an-1+log2an=$\left\{\begin{array}{l}{\frac{n-1}{2}+lo{g}_{2}{a}_{\frac{n}{2}},n为奇数}\\{\frac{n}{2},n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列四个说法:
①a∥α,b?α,则a∥b;
②a∩α=P,b?α,则a与b不平行;
③a?α,则a∥α;
④a∥α,b∥α,则a∥b.
其中错误的说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C:$\frac{x^2}{m}-\frac{y^2}{n}$=1,曲线f(x)=ex在点(0,2)处的切线方程为2mx-ny+2=0,则该双曲线的渐近线方程为(  )
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

同步练习册答案