精英家教网 > 高中数学 > 题目详情
18.等比数列{an}满足an>0,n=1,2,…,且a2•an-1=2(n≥2),则当n≥2时,log2a1+log2a2+log2a3+log2a4+…+log2an-1+log2an=$\left\{\begin{array}{l}{\frac{n-1}{2}+lo{g}_{2}{a}_{\frac{n}{2}},n为奇数}\\{\frac{n}{2},n为偶数}\end{array}\right.$.

分析 n为奇数时,log2a1+log2a2+log2a3+log2a4+…+log2an-1+log2an=$lo{g}_{2}[({a}_{1}{a}_{n})×({a}_{2}{a}_{n-1})×({a}_{3}{a}_{n-2})×…×({a}_{\frac{n-1}{2}}{a}_{\frac{n+3}{2}})×{a}_{\frac{n}{2}}]$;当n为偶数时,log2a1+log2a2+log2a3+log2a4+…+log2an-1+log2an+1=log2[(a1an)×(a2an-1)×(a3an-2)×…×(${a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}$)],由此能求出结果.

解答 解:∵等比数列{an}满足an>0,n=1,2,…,且a2•an-1=2(n≥2),
∴当n≥2时,
n为奇数时,
log2a1+log2a2+log2a3+log2a4+…+log2an-1+log2an
=$lo{g}_{2}[({a}_{1}{a}_{n})×({a}_{2}{a}_{n-1})×({a}_{3}{a}_{n-2})×…×({a}_{\frac{n-1}{2}}{a}_{\frac{n+3}{2}})×{a}_{\frac{n}{2}}]$
=$lo{g}_{2}{2}^{\frac{n-1}{2}}$+$lo{g}_{2}{a}_{\frac{n}{2}}$
=$\frac{n-1}{2}$+$lo{g}_{2}{a}_{\frac{n}{2}}$.
当n为偶数时,
log2a1+log2a2+log2a3+log2a4+…+log2an-1+log2an+1
=log2[(a1an)×(a2an-1)×(a3an-2)×…×(${a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}$)]
=$lo{g}_{2}{2}^{\frac{n}{2}}$=$\frac{n}{2}$.
故答案为:$\left\{\begin{array}{l}{\frac{n-1}{2}+lo{g}_{2}{a}_{\frac{n}{2}},n为奇数}\\{\frac{n}{2},n为偶数}\end{array}\right.$.

点评 本题考查对数值的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.国庆节放假,2个三口之家结伴乘火车外出,每人均实名购票,上车后随意坐所购票的6个座位,则恰好有2人是对号入座(座位号与自己车票相符)的坐法有135种?(用具体数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数,在区间(0,1)上为增函数的是(  )
A.y=1-xB.y=-|x|C.$y=\frac{1}{x-1}$D.$y={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{a{x}^{3}}{3}$+$\frac{a{x}^{2}}{2}$-2ax+2a+1的图象经过四个象限,则实数a的取值范围是(  )
A.(-$\frac{6}{5}$,$\frac{3}{16}$)B.(-$\frac{8}{5}$,-$\frac{3}{16}$)C.(-$\frac{8}{5}$,-$\frac{1}{16}$)D.(-$\frac{6}{5}$,-$\frac{3}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆心为H的圆x2+y2+2x-15=0和定点A(1,0),B是圆上任意一点,线段AB的中垂线l和直线BH相交于点M,当点B在圆上运动时,点M的轨迹记为曲线C.
(1)求C的方程;
(2)设直线m与曲线C交于P,Q两点,O为坐标原点,若∠POQ=90°,问$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$是否为定值?若是求其定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得最小值m-1(m≠0).设f(x)=$\frac{g(x)}{x}$.
(1)求二次函数y=g(x)的解析式(假设m为已知常数);
(2)若曲线y=f(x)上的点P[到点Q(0,2)的距离的最小值为$\sqrt{2}$,求m的值;
(3)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若偶函数f(x)对定义域内任意x都有f(x+2)=-f(x),且当x∈(0,1]时,f(x)=log2x,则$f({\frac{15}{2}})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.化简$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}$的结果是(  )
A.1B.sinαC.-tanαD.tanα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在锐角△ABC中,已知$AB=2\sqrt{3},BC=3$,其面积${S_{△ABC}}=3\sqrt{2}$,则△ABC的外接圆面积为$\frac{27π}{8}$.

查看答案和解析>>

同步练习册答案