精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37.
(Ⅰ)求a的值;     
(Ⅱ)求f(x)在点(1,f(1))处的切线方程.

分析 (Ⅰ)求出函数的导数,求得[-2,2]的单调区间,求得最小值,解方程可得a的值;
(Ⅱ)求得x=1处切线的斜率和切点,由点斜式方程,可得切线方程.

解答 解:(Ⅰ)f(x)的导数为f′(x)=6x2-12x,
令f′(x)=0,得到x=0或x=2.
x∈[-2,0),f′(x)>0,f(x)单调递增,
x∈[0,2],f′(x)<0,f(x)单调递减.
又f(-2)=a-40,f(2)=a-8>f(-2),
所以f(x)min=a-40=-37,解得a=3.
(Ⅱ)f′(1)=-6,f(1)=-1,
所以f(x)在点(1,f(1))处的切线方程为y-(-1)=-6(x-1),
即6x+y-5=0.

点评 本题考查导数的运用:求切线方程和极值、最值,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow{m}$≠$\overrightarrow{0}$,λ∈R,$\overrightarrow{a}$=$\overrightarrow{m}$+λ$\overrightarrow{n}$,$\overrightarrow{b}$=3$\overrightarrow{m}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则(  )
A.λ=0B.$\overrightarrow{n}$=$\overrightarrow{0}$C.$\overrightarrow{m}$∥$\overrightarrow{n}$D.$\overrightarrow{m}$∥$\overrightarrow{n}$或λ=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.α,β,γ为平面,l是直线,已知α∩β=l,则“α⊥γ,β⊥γ”是“l⊥γ”的(  )条件.
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用0,1,2,3,4,5,6七个数共可以组成180个没有重复数字的三位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},a3=7,a2+a5+a8=39,
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,求使得Tn<$\frac{m}{20}$对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lga-lgb的不同值的个数是18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设${({1-2x})^8}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_8}{x^8}$,则a0+a1+a2+…+a8=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平行四边形ABCD中,点E为CD的中点,$\overrightarrow{AM}$=m•$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AD}$(m•n≠0),若$\overrightarrow{MN}$∥$\overrightarrow{BE}$,则$\frac{n}{m}$等于(  )
A.1B.2C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知C${\;}_{n}^{0}$+3C${\;}_{n}^{1}$+32C${\;}_{n}^{2}$+…+3nC${\;}_{n}^{n}$=1024,则C${\;}_{n+1}^{2}$+C${\;}_{n+1}^{3}$的值为(  )
A.21B.35C.56D.210

查看答案和解析>>

同步练习册答案