分析 由约束条件作出可行域,再由x2+y2的几何意义,即可行域内动点与原点距离的平方求得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{x+y=2}\\{2x-3y=9}\end{array}\right.$,解得B(3,-1),
x2+y2的几何意义为可行域内动点与原点距离的平方,其最大值|OB|2=32+(-1)2=10,
故答案为:10.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $y=±\sqrt{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | y=±4x | D. | y=±$\frac{1}{4}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com