精英家教网 > 高中数学 > 题目详情
4.在△ABC中,B=$\frac{π}{3}$,BC=2,点D、E分别在边AB、AC上,AD=DC,DE⊥AC,且DE≥$\frac{{\sqrt{6}}}{2}$,则∠ACB的最大值为75°.

分析 先求出CD,在△BCD中,由正弦定理可得$\frac{BC}{sin∠BDC}$=$\frac{CD}{sin∠B}$,结合∠BDC=2∠A,即可得求出∠A的最小值,从而得出∠ACD的最大值.

解答 解:如图所示,
△ABC中,B=$\frac{π}{3}$,BC=2,AD=DC,DE⊥AC,
∴∠DCE=∠A,
∠BDC=2∠A,
∴DC=AD=$\frac{DE}{sin∠A}$;
又$\frac{DC}{sin∠B}$=$\frac{BC}{sin∠BDC}$,
即$\frac{DE}{sin∠A•sin\frac{π}{3}}$=$\frac{2}{sin2∠A}$,
∴cos∠A=$\frac{\frac{\sqrt{3}}{2}}{DE}$=$\frac{\sqrt{3}}{2DE}$,
又DE≥$\frac{{\sqrt{6}}}{2}$,
∴cos∠A≤$\frac{\sqrt{3}}{2}$×$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{2}}{2}$,
∴∠A≥$\frac{π}{4}$;
∴∠ACB=π-∠B-∠A≤π-$\frac{π}{3}$-$\frac{π}{4}$=$\frac{5π}{12}$,
即∠ACB的最大值为$\frac{5π}{12}$.
故答案为:$\frac{5π}{12}$.

点评 本题考查了解三角形的应用问题,也考查了三角函数最值的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.lg2•log210的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算log2(47×25)=19.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\left\{\begin{array}{l}{log_2}(x+2),x>0\\ \frac{x^2}{2x+6},x≤0\end{array}\right.$,f(a)=2,则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P一ABCD中,PC=AD=CD=$\frac{1}{2}$AB=2,AB∥DC,AD⊥CD,PC⊥平面ABCD.
(1)求证:BC⊥平面PAC;
(2)若M为线段PA的中点,且过C,D,M三点的平面与线段PB交于点N,确定点N的位置,说明理由;并求三棱锥N一AMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若sin(α+β)=$\frac{4}{5}$,sin(α-β)=-$\frac{12}{13}$,
(1)求$\frac{tanα}{tanβ}$的值;
(2)若$\frac{π}{2}$<α+β<π,-$\frac{π}{2}$<α-β<$\frac{π}{2}$,求cos2α,sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的三个内角A、B、C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(2c-b,-a),$\overrightarrow{n}$=(cosA,cosB),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求A的值;
(2)若a=$\sqrt{7}$,sinC=3sinB,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,四边形ABCD是菱形,O是AC与BD的交点,SA⊥平面ABCD.
(Ⅰ)求证:平面SAC⊥平面SBD;
(Ⅱ)若∠DAB=120°,DS⊥BS,AB=2,求二面角S-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.三阶行列式$|{\begin{array}{l}1&{-3}&5\\ 4&0&0\\{-1}&2&1\end{array}}|$中,元素5的代数余子式的值为8.

查看答案和解析>>

同步练习册答案