分析 先求出CD,在△BCD中,由正弦定理可得$\frac{BC}{sin∠BDC}$=$\frac{CD}{sin∠B}$,结合∠BDC=2∠A,即可得求出∠A的最小值,从而得出∠ACD的最大值.
解答 解:如图所示,![]()
△ABC中,B=$\frac{π}{3}$,BC=2,AD=DC,DE⊥AC,
∴∠DCE=∠A,
∠BDC=2∠A,
∴DC=AD=$\frac{DE}{sin∠A}$;
又$\frac{DC}{sin∠B}$=$\frac{BC}{sin∠BDC}$,
即$\frac{DE}{sin∠A•sin\frac{π}{3}}$=$\frac{2}{sin2∠A}$,
∴cos∠A=$\frac{\frac{\sqrt{3}}{2}}{DE}$=$\frac{\sqrt{3}}{2DE}$,
又DE≥$\frac{{\sqrt{6}}}{2}$,
∴cos∠A≤$\frac{\sqrt{3}}{2}$×$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{2}}{2}$,
∴∠A≥$\frac{π}{4}$;
∴∠ACB=π-∠B-∠A≤π-$\frac{π}{3}$-$\frac{π}{4}$=$\frac{5π}{12}$,
即∠ACB的最大值为$\frac{5π}{12}$.
故答案为:$\frac{5π}{12}$.
点评 本题考查了解三角形的应用问题,也考查了三角函数最值的应用问题,是综合性题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com