精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最大值,则下列结论正确的是(  )
A.f(2)<f(-2)<f(0)B.f(0)<f(-2)<f(2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)

分析 根据f(x)的周期和对称轴找出f(x)的单调区间,利用函数的对称性和单调性比较大小.

解答 解:∵f(x)的最小正周期为π,fmax(x)=f($\frac{2π}{3}$),
∴f(x)在[$\frac{π}{6}$,$\frac{2π}{3}$]上是增函数.且f($\frac{π}{6}$)为f(x)的最小值.
f(-2)=f(π-2),
∴f(x)关于直线x=$\frac{π}{6}$对称,
∴f(0)=f($\frac{π}{3}$),
∵$\frac{π}{6}$<$\frac{π}{3}$<π-2<2<$\frac{2π}{3}$,
∴f($\frac{π}{3}$)<f(π-2)<f(2).即f(0)<f(-2)<f(2).
故选:B.

点评 本题考查了正弦函数的图象与性质,函数单调性于周期性的应用,将自变量转化到同一个单调区间上是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若tanα,tanβ是方程x2-3$\sqrt{3}$x+4=0的两个根,则tan(α+β)=$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上任意两点P,Q,若OP⊥OQ,则乘积|OP|•|OQ|的最小值为$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个空间几何体的三视图(单位:cm)如图所示,则侧视图的面积为1cm2,该几何体的体积为$\frac{π}{6}$+$\frac{1}{3}$cm3cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,
(Ⅰ)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(Ⅱ)用样本估计总体,如果90%的居民每月的用水量不超出标准,则月均用水量的最低标准定为多少吨,并说明理由(精确到0.01);
(Ⅲ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(Ⅱ)中最低标准的人数为X,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在边长为1的正方体ABCD-A1B1C1D1中.
(1)求∠CAB1的度数;
(2)求二面角B-AC-B1的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从1,2,3,5这四个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知命题p:方程$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{4-k}$=1表示焦点在x轴上的椭圆,命题q:(k-1)x2+(k-3)y2=1表示双曲线.若p∨q为真命题,则实数k的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=cos2x-2sinxcosx-sin2x,g(x)=2cos2x+2sinxcosx-1,把f(x)的图象向右平移m个单位后,图象恰好为函数g(x)的图象,则m的值可以是(  )
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案