精英家教网 > 高中数学 > 题目详情
已知圆x2+y2=16与圆(x-4)2+(y+3)2=r2在交点处的切线互相垂直,求实数r的值.
考点:圆的切线方程
专题:直线与圆
分析:根据两个圆切线之间的垂足关系建立条件方程,即可得到结论.
解答: 解:x2+y2=16的圆心O,半径r=4,圆(x-4)2+(y+3)2=r2的圆心是A(4,-3),
设交点之一是B,
因为过B点的切线互相垂直,
所以过B点的两条半径也垂直,
即OB垂直AB
所以三角形OAB是直角三角形,
∠OBA=90°
AO2=(4-0)2+(-3-0)2=25
OB=4,OB2=16
r2=AO2-OB2=9,
即r=3.
点评:本题主要考查圆与圆的位置关系的应用,利用圆的切线之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则V1+V2+V3+V4=(  )
A、
48+13π
3
B、
52+16π
3
C、
42+13π
3
D、
52+13π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图如图所示(每个正方形的边长均为1),则该几何体的体积等于(  ) 
A、
1
6
B、
1
3
C、
1
2
D、
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,a、b、c分别为角A、B、C的对边,已知b=2,∠B=
π
3

(1)若c=2a,求面积S;
(2)求△ABC的周长l及面积S的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-1|+x2+ax,若函数f(x)在区间(0,2)上有两个不同的零点x1,x2,求
1
x1
+
1
x2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设一元二次方程kx2+2x+2k+1=0的两根为x1、x2,求在下列情况下,实数k的取值范围
(1)方程有负数根;
(2)方程有两个不等且都小于2的实数根;
(3)方程有两个根,一个大于3,一个小于2;
(4)方程有两个位于区间(2,3)上的根.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地近年来持续干旱,为倡导节约用水,该地采用了阶梯水价计费方法,具体为:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.
(1)写出每户每月用水量x(吨)与支付费y(元)的函数关系;
(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:
月用水量x(吨) 3 4 5 6 7
频数 1 3 3 3 2
请你计算该家庭去年支付水费的月平均费用(精确到1元);
(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:
月用水量x(吨) 1 2 3 4 5 6 7
频数 10 20 16 16 15 13 10
据此估计该地“节约用水家庭”的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行如图的程序框图,那么输出的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1-2x)2011=a0+a1x+a2x2+…+a2010x2010+a2011x2011(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2010)+(a0+a2011)=
 
.(用数字作答)

查看答案和解析>>

同步练习册答案