精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,AB=AC,D,E分别为BC,BB1的中点,四边形B1BCC1是正方形.
(1)求证:A1B∥平面AC1D;
(2)求证:CE⊥平面AC1D.
考点:直线与平面平行的判定,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(1)设A1C∩AC1=0,根据O、D 分别为CA1、CB的中点,可得OD∥A1B.再利用直线和平面平行的判定定理证得A1B∥平面AC1D.
(2)由题意可得三棱柱ABC-A1B1C1为直三棱柱,利用平面和平面垂直的性质可得AD⊥平面BCC1B1,可得AD⊥CE.再根据B1BCC1是正方形,D、E 分别为BC、BB1的中点,证得C1D⊥CE.从而利用直线和平面垂直的判定定理证得CE⊥平面AC1D.
解答: (1)证明:设A1C∩AC1=0,则由三棱柱的性质可得O、D 分别为CA1、CB的中点,∴OD∥A1B.
∵A1B?平面AC1D,OD?平面AC1D,∴A1B∥平面AC1D.
(2)证明:由BB1⊥平面ABC,可得三棱柱ABC-A1B1C1为直三棱柱,∵AB=AC,∴AD⊥BC.
由平面ABC⊥平面BCC1B1,AD?平面BCC1B1,平面ABC∩平面BCC1B1=BC,可得AD⊥平面BCC1B1
又CE?平面BCC1B1,故有AD⊥CE.
∵B1BCC1是正方形,D、E 分别为BC、BB1的中点,故有C1D⊥CE.
这样,CE垂直于平面AC1D内的两条相交直线AD、C1E,∴CE⊥平面AC1D.
点评:本题主要考查直线和平面平行的判定定理、直线和平面垂直的判定定理的应用,平面和平面垂直的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.其中E是PD的中点.
(Ⅰ)求此四棱锥的体积;
(Ⅱ)求证:PB∥平面ACE;
(Ⅲ)求证:AE⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+xlnx.
(1)求这个函数的导函数;
(2)求这个函数在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,则a2013=
 
;a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=a2=1,an+2=an+1+an对所有正整数n都成立,则a10等于(  )
A、34B、55C、89D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x2+a,x∈R的图象在点x=0处的切线为y=bx.(e≈2.71828).
(1)求函数f(x)的解析式;
(理科)(2)若k∈Z,且f(x)+
1
2
(3x2-5x-2k)≥0对任意x∈R恒成立,求k的最大值.
(文科)(2)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A为曲线M上任意一点,B为曲线N上任意一点,若|AB|的最小值存在且为d,则称d为曲线M,N之间的距离.
(1)若曲线M:y=ex(e为自然对数的底数),曲线N:y=x,则曲线M,N之间的距离为
 

(2)若曲线M:y2+1=x,曲线N:x2+1+y=0,则曲线M,N之间的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等差数列{an}满足a1=2,a22=a5+6,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程x2-2x+m+1=0有两个正根,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案