精英家教网 > 高中数学 > 题目详情
12.设集合A={x|x2+(a-1)x+b=0}={a},集合M={(a,b)},求集合M.

分析 由题意知方程x2+(a-1)x+b=0有且只有一个根a,从而解得.

解答 解:∵A={x|x2+(a-1)x+b=0}={a},
∴方程x2+(a-1)x+b=0有且只有一个根a,
∴a2+(a-1)•a+b=0,即2a2-a+b=0…①
△=(a-1)2-4b=0…②
由①②得到:a=$\frac{1}{3}$,b=$\frac{1}{9}$.
故M={($\frac{1}{3}$,$\frac{1}{9}$)}.

点评 本题考查了集合的化简与判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn=n2
(1)求an
(2)将{an}中的第2项,第4项,…,第2n项按原来的顺序排成一个新数列{bn},令cn=$\frac{{({a_n}+1)•({b_n}+1)}}{4}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若a,b∈R,a≠b,a2-a-1=0,b2=b+1.
(1)求$\frac{a}{b}$+$\frac{b}{a}$的值.
(2)求a5+b5的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设直线l过双曲线x2-y2=1的一个焦点,且与双曲线相交于A、B两点,若以AB为直径的圆与y轴相切,则|AB|的值为(  )
A.1+$\sqrt{2}$B.1+2$\sqrt{2}$C.2+2$\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={x|x∈Z,x≥0},B={y|y=x2},则A与B的关系是A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\left\{\begin{array}{l}{x+2,x≤-1}\\{{x}^{2},-1<x<2}\\{2x,x≥2}\end{array}\right.$,则它的定义域是R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,∠B=$\frac{π}{3}$,∠C=$\frac{π}{4}$,BC=8,D是边BC上一点,且$\overrightarrow{BD}$=$\frac{\sqrt{3}-1}{2}$$\overrightarrow{BC}$,则AD的长为(  )
A.12-4$\sqrt{3}$B.12+4$\sqrt{3}$C.4$\sqrt{3}$-4D.4$\sqrt{3}$+4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将10个三好名额分到7个班中,每班至少一名,则分法种数为(  )
A.A${\;}_{10}^{7}$B.C${\;}_{10}^{7}$C.84D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-axlnx,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设$g(x)=\frac{f(x)}{lnx}$,若函数g(x)在(1,+∞)上为减函数,求实数a的最小值;
(Ⅲ)若$?{x_0}∈[{e,{e^2}}]$,使得$f({x_0})≤\frac{1}{4}ln{x_0}$成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案