精英家教网 > 高中数学 > 题目详情
14.下列不等式①a2+1>2a;②a2+4≥4a;③|$\frac{b}{a}$+$\frac{a}{b}$|≥2;④$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$≤ab.其中恒成立的是(  )
A.①④B.③④C.②③D.①②

分析 逐个结合不等式的性质进行验证即可.

解答 解:对于①:当a=1时,此时该不等式不成立;
对于②③均成立,
对于④:$\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$≤ab,当a,b中有一个负数时,则不再成立,
故选:C.

点评 本题重点考查了不等式的基本性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)已知函数f(x)满足2f(x)+f(-x)=3x+4,求f(x)的解析式;
(2)已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知函f(x)是幂函数,f(x)在(-∞,0)上是减函数,且f(f($\root{3}{2}$))=8.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数f(x)=$\frac{x(2-x)}{|x-1|-1}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-6x+8<0},B={x|x2-4a+3a2<0}.
(1)若A⊆B,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.
(1)f(m+1)=3求m;
(2)判断函数f(x)的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x),g(x)分别为定义在R上偶函数和奇函数,f(x)-g(x)=x3+x2+1,则f(1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2-4x+4=0},B={x|x2-3x+m=0}.
(1)当m=2时,求A∩B,A∪B;
(2)当A∩B=A时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若k∈R,则直线(k+2)x+(1-k)y-3=0必通过点(  )
A.(-1,-1)B.(1,1)C.(-1,-2)D.(1,2)

查看答案和解析>>

同步练习册答案