精英家教网 > 高中数学 > 题目详情
17.已知实数x、y满足$\left\{\begin{array}{l}{x≥1}\\{y≤a}\\{x-y≤0}\end{array}\right.$(a>1),若目标函数z=x+y取得最大值为4,则实数a=2.

分析 画出约束条件表示的可行域,然后求解a的值即可.

解答 解:如图$\left\{\begin{array}{l}x≥1\\ y≤a\\ x-y≤0\end{array}\right.$表示的可行域如图阴影部分,目标函数z=x+y取得最大值为4,目标函数经过可行域的A时,取得最大值,由$\left\{\begin{array}{l}y=a\\ x-y=0\end{array}\right.$可得$\left\{\begin{array}{l}x=a\\ y=a\end{array}\right.$即A(a,a),
a+a=4,解得a=2.
故答案为:2.

点评 本题考查线性规划的应用,画出约束条件表示的可行域是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知腰长为1的等腰三角形ABC中,AB⊥AC,E,F分别是边AB,AC上的动点,且AE=mAB,AF=nAC(0≤m<1,0<n<1),m+n=1,设BF与CE的交点为P,则线段AP的长有(  )
A.最大值$\frac{\sqrt{2}}{3}$B.最小值$\frac{\sqrt{2}}{3}$C.最大值1D.最小值1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一个水池装有甲,乙两个进水管和丙一个出水管,若打开甲水管4小时,乙水管2小时和丙水管2小时,则水池中余水5吨;若打开甲水管2小时,乙水管3小时,丙水管1小时,则水池中余水4吨,问打开加水管8小时,乙水管8小时,丙水管4小时,池中余水多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.梯形ABCD中,AB∥CD,∠ADC=90°,PD⊥面ABCD,点M是PD的中点,经过A,B,M三点的平面与PC交于N点.
(1)求证:点N是PC的中点;
(2)若PD=10,AD=3,DC=6,求三棱锥P-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求y=x|x-a|在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C的对边分别为a,b,c,函数f(x)=(a+b+c)x2+2$\sqrt{ab}$x+a+b-c恰有一个零点,则角C的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若在区间(0,m]上恰有一个实数a使函数f(x)=x4-ax2-1有整数零点,则实数m的取值范围是[$\frac{15}{4}$,$\frac{80}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.f(x)=x3+ax2+bx+c在区间(1,2)上有三个零点,则(  )
A.f(1)f(2)≤$\frac{1}{64}$B.f(1)f(2)<$\frac{1}{64}$C.f(1)f(2)>-$\frac{1}{64}$D.f(1)f(2)≥-$\frac{1}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x2-5x+4≤0}与集合B={x|x2-2ax+a+2≤0,a∈R},若A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案