精英家教网 > 高中数学 > 题目详情
6.已知腰长为1的等腰三角形ABC中,AB⊥AC,E,F分别是边AB,AC上的动点,且AE=mAB,AF=nAC(0≤m<1,0<n<1),m+n=1,设BF与CE的交点为P,则线段AP的长有(  )
A.最大值$\frac{\sqrt{2}}{3}$B.最小值$\frac{\sqrt{2}}{3}$C.最大值1D.最小值1

分析 取极值法,m=1,n=0,以及n=1,m=0时,交点为B或C,对应AP=1,
m=n=$\frac{1}{2}$时AP取得最小值,交点P是三角形的重心,求出即可.

解答 解:如图所示,
等腰三角形ABC中,AB⊥AC,且AB=1;
E,F分别是边AB,AC上的动点,AE=mAB,AF=nAC(0≤m<1,0<n<1),m+n=1;
根据题意得,当m=n=$\frac{1}{2}$时AP取得最小值,
此时E F是各边的中点,
又因为三角形是等腰△,
所以交点P是三角形底边高上的一点,
即P是三角形3条中线的交点,P是三角形的重心,
由重心公式得AP=$\frac{2}{3}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{3}$.

点评 本题考查了等腰直角三角形的边角关系的应用问题,也考查了特殊值应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1、F2,且|F1F2|=2,过F2的弦为AB,三角形F1AB的周长为12,则b=(  )
A.2$\sqrt{2}$B.2C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,且椭圆上一点与两个焦点构成的三角形周长为6+4$\sqrt{2}$.
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A,B两点(A,B不是顶点),且以AB为直径的圆过椭圆的右顶点C,证明这样的直线l恒过定点,并求出该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数(2λ2+5λ+2)+(λ2+λ-2)i为虚数,则实数λ满足(  )
A.λ=-$\frac{1}{2}$B.λ=-2或-$\frac{1}{2}$C.λ≠-2D.λ≠1且λ≠-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列说法正确的是③(填序号)
①有一个面是多边形,其余各面都是三角形,由这些面所围成的几何体是棱锥;
②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.
③三棱锥的任何一个面都可看作底面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=${e}^{\frac{1}{x}}$,问当x→0时,f(x)是否存在极限?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,P是其上一点,若PF1⊥PF2,则||PF1|-|PF2||等于2$\sqrt{{a}^{2}-2{b}^{2}}$.(用a,b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)试证:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$(其中n是正整数);
(2)计算:$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{9×10}$;
(3)证明:对任意大于1的正整数n,有$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x、y满足$\left\{\begin{array}{l}{x≥1}\\{y≤a}\\{x-y≤0}\end{array}\right.$(a>1),若目标函数z=x+y取得最大值为4,则实数a=2.

查看答案和解析>>

同步练习册答案