精英家教网 > 高中数学 > 题目详情
1.下列说法正确的是③(填序号)
①有一个面是多边形,其余各面都是三角形,由这些面所围成的几何体是棱锥;
②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.
③三棱锥的任何一个面都可看作底面.

分析 利用棱锥的定义判断①的正误;棱台的定义判断②的正误;棱锥的结构特征判断③的正误;

解答 解:对于①,有一个面是多边形,其余各面都是三角形,由这些面所围成的几何体是棱锥;不满足棱锥的定义,(其余各面都是三角形,并且三角形有一个公共顶点,)所以①不正确;
对于②,用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.不满足棱台的定义,(上下两个平面平行),所以②不正确;
对于③,三棱锥的任何一个面都可看作底面.由于三棱锥的4个平面都是三角形,所以③正确.
故答案为:③.

点评 本题考查棱锥与棱台的定义的理解与应用,棱锥的结构特征,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在1~100的100个整数中,任意选取三个互不相同的数组成有序三元数(x,y,z),求满足方程x+y=3z+10的(x,y,z)的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设△ABC的内角A,B,C所对的边分别为a,b,c且acosC-$\frac{1}{2}$c=b.
(I)求角A的大小;  
(Ⅱ)若a=3,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.非零向量$\overrightarrow a,\overrightarrow b$夹角为60°,且|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围为(  )
A.(1,$\sqrt{3}$]B.(0,$\sqrt{3}$]C.(1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设关于x的方程x2-2ax+a2-2a-3=0,试分别探究满足下列条件的实数a的取值范围.
(1)方程有实根;
(2)方程有两正根;
(3)方程有一正一负根;
(4)两根均大于0且小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知腰长为1的等腰三角形ABC中,AB⊥AC,E,F分别是边AB,AC上的动点,且AE=mAB,AF=nAC(0≤m<1,0<n<1),m+n=1,设BF与CE的交点为P,则线段AP的长有(  )
A.最大值$\frac{\sqrt{2}}{3}$B.最小值$\frac{\sqrt{2}}{3}$C.最大值1D.最小值1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{1-x-2{x}^{2}}&{x≤0}\\{|lgx|}&{x>0}\end{array}\right.$若关于x的方程f(x)=a有四个实根x1,x2,x3,x4,则这四根之积x1,x2,x3,x4的取值范围是(  )
A.[0,$\frac{1}{2}$)B.[0,$\frac{1}{4}$)C.[0,$\frac{1}{8}$)D.[0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.α,β是两个不重合的平面,在下列条件中,可能判断平面α,β平行的是(  )
A.α,β都垂直于平面γB.平面γ与α,β均无公共点
C.存在一条直线a,a?α,a∥βD.α内不共线的三点到β的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求y=x|x-a|在[0,1]上的最大值.

查看答案和解析>>

同步练习册答案