精英家教网 > 高中数学 > 题目详情
15.(1)试证:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$(其中n是正整数);
(2)计算:$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{9×10}$;
(3)证明:对任意大于1的正整数n,有$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$<$\frac{1}{2}$.

分析 (1)可由等式的右边证到左边;
(2)运用(1)的结论,计算即可得到;
(3)运用(1)的结论,由裂项相消求和,再由不等式的性质即可得证.

解答 (1)证明:$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{n+1-n}{n(n+1)}$=$\frac{1}{n(n+1)}$,
即有$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$(其中n是正整数);
(2)解:$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{9×10}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{9}$-$\frac{1}{10}$
=1-$\frac{1}{10}$=$\frac{9}{10}$;
(3)证明:$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=$\frac{1}{2}$-$\frac{1}{n+1}$<$\frac{1}{2}$,
则有对任意大于1的正整数n,有$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$<$\frac{1}{2}$.

点评 本题主要考查不等式的证明:裂项相消法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.记等差数列{an}的前n项和为Sn,若a3+a5=10,S9=54,则直线a1x+a4y+a2=0的斜率为-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知腰长为1的等腰三角形ABC中,AB⊥AC,E,F分别是边AB,AC上的动点,且AE=mAB,AF=nAC(0≤m<1,0<n<1),m+n=1,设BF与CE的交点为P,则线段AP的长有(  )
A.最大值$\frac{\sqrt{2}}{3}$B.最小值$\frac{\sqrt{2}}{3}$C.最大值1D.最小值1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{3}{5}$,过右焦点F2且与x轴垂直的直线被椭圆T截得的线段长为$\frac{32}{5}$
(1)求椭圆T的方程;
(2)设A为椭圆T的左顶点,过F2的动直线l交椭圆于B,C两点(与A不重合),直线AB,AC的斜率分别为k1,k2.求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.α,β是两个不重合的平面,在下列条件中,可能判断平面α,β平行的是(  )
A.α,β都垂直于平面γB.平面γ与α,β均无公共点
C.存在一条直线a,a?α,a∥βD.α内不共线的三点到β的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在四棱锥P-ABCD中,底面ABCD是边长为a的菱形,顶点P在底面ABCD上的投影正好是线段AC的中点O,已知二面角B-PC-D的大小为60°,证明:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一个水池装有甲,乙两个进水管和丙一个出水管,若打开甲水管4小时,乙水管2小时和丙水管2小时,则水池中余水5吨;若打开甲水管2小时,乙水管3小时,丙水管1小时,则水池中余水4吨,问打开加水管8小时,乙水管8小时,丙水管4小时,池中余水多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.梯形ABCD中,AB∥CD,∠ADC=90°,PD⊥面ABCD,点M是PD的中点,经过A,B,M三点的平面与PC交于N点.
(1)求证:点N是PC的中点;
(2)若PD=10,AD=3,DC=6,求三棱锥P-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.f(x)=x3+ax2+bx+c在区间(1,2)上有三个零点,则(  )
A.f(1)f(2)≤$\frac{1}{64}$B.f(1)f(2)<$\frac{1}{64}$C.f(1)f(2)>-$\frac{1}{64}$D.f(1)f(2)≥-$\frac{1}{64}$

查看答案和解析>>

同步练习册答案