精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)在定义域[-2,2]内递减且满足f(1-m)+f(1-m2)<0,则实数m的取值范围为(  )
A、(-1,1)B、[-1,1]C、[-1,1)D、(-1,1]
分析:此题的关键是把函数不等式转换成关于m的不等式.最后综合取交集得出答案.
解答:解:依题设f(1-m)+f(1-m2)<0      f(1-m)<-f(1-m2
又因 f(x)奇函数
故-f(1-m2)=f(m2-1)
f (1-m)<f(m2-1)
因为函数在定义域[-2,2]内递减
故1-m>m2-1,即m2+m-2<0
即-2<m<1
又因函数f(x)的定义域是[-2,2],
故-2≤1-m≤2且-2≤1-m2≤2,
即-1≤m≤3且-
3
≤m≤
3

最后综合得-1≤m<1
故选C
点评:本题主要考查函数的奇偶性和单调性的运用.解题过程中应注意定义域的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知奇函数f(x)在x≥0时的图象是如图所示的抛物线的一部分,
(1)求函数f(x)的表达式,
(2)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在[-1,0]上单调递减,又α,β为锐角三角形的两内角,则有(  )
A、f(sinα-sinβ)≥f(cosα-cosβ)B、f(sinα-cosβ)>f(cosα-sinβ)C、f(sinα-cosβ)≥f(cosα-sinβ)D、f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在R上单调递增,且f(2x-1)+f(
1
2
)<0,则x的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1};
④在极坐标系中,圆ρ=-4cosθ的圆心的直角坐标是(-2,0).
其中正确的是
②,④
②,④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在R上单调递减,且f(3-a)+f(1-a)<0,则a的取值范围是
(-∞,2)
(-∞,2)

查看答案和解析>>

同步练习册答案