精英家教网 > 高中数学 > 题目详情
数列{an}满足:a1=1,an+1=
n2an+an2
an2+2an-n
+1,n∈N*
(Ⅰ)写出a2,a3,a4,猜想通项公式an,用数学归纳法证明你的猜想;
(Ⅱ)求证:
a 1a2
+
a2a3
+…+
ana n+1
1
2
(an+1)2,n∈N*
考点:数列递推式,数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件,利用递推公式能求出a2=2,a3=3,a4=4,由此猜想an=n,再用数学归纳法证明.
(Ⅱ)an=n,知证明
a 1a2
+
a2a3
+…+
ana n+1
1
2
(an+1)2,n∈N*.即证
1×2
+
2×3
+…+
n×(n+1)
1
2
(n+1)2
,由此利用均值定理能求出来.
解答: 解:(Ⅰ)∵数列{an}满足:a1=1,an+1=
n2an+an2
an2+2an-n
+1,n∈N*
∴a2=
1+1
1+2-1
+1
=2,
a3=
4×2+4
4+4-2
+1
=3,
a4=
9×3+9
9+6-3
+1
=4,猜想an=n
证明:①当n=1时,a1=1,猜想成立;
②假设当n=k(k∈N*)时猜想成立,即ak=k
那么,ak+1=
k2•k+k2
k2+2k-k
+1=k+1

∴当n=k+1时猜想也成立
由①②可知猜想对任意n∈N*都成立,即an=n
(Ⅱ)证明:∵an=n,
证明
a 1a2
+
a2a3
+…+
ana n+1
1
2
(an+1)2,n∈N*
即证
1×2
+
2×3
+…+
n×(n+1)
1
2
(n+1)2

由均值不等式知:
n×(n+1)
n+n+1
2
=n+
1
2

1×2
+
2×3
+…+
n×(n+1)
<(1+2+…+n)+
n
2
=
n(n+1)
2
+
n
2
=
n(n+2)
2
1
2
(n+1)2

a 1a2
+
a2a3
+…+
ana n+1
1
2
(an+1)2,n∈N*
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意数学归纳法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知条件p:x<2,条件q:x<3,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

“a>b”是“log3a>log3b”的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1的方程为x-
2
y+1=0,其倾斜角为α.过点P(-
2
,2)的直线l的倾斜角为β,且β=2α.
(1)求直线l的一般式方程;
(2)
cos2β
1+cos2β-sin2β
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数y=f(x)满足:①f(x)=f(2-x);②当0≤x≤1时,f(x)=x2
(1)求f(5.5)的值;
(2)证明:x∈R时,f(x+2)=f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log2[ax2-(a+1)x+1]的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若M
|ab(a2-b2)+bc(b2-c2)+ca(c2-a2)|
a2+b2+c2
对一切实数a、b、c都成立,求最小的实数M.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线Γ:x2+y2=1(x≥0,y≥0)与x轴交于点A,点P在曲线Γ上,∠AOP=α.
(Ⅰ)若点P的坐标是(
3
5
4
5
),求2cos
α
2
(cos
α
2
+sin
α
2
)的值;
(Ⅱ)求函数f(α)=sin(α-
π
6
)+
3
cos(α-
π
6
)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx与圆C1:(x-1)2+y2=1相交于A、B两点,圆C2与圆C1相外切,且与直线l相切于点M(3,
3
),求
(1)k的值
(2)|AB|的值
(3)圆C2的方程.

查看答案和解析>>

同步练习册答案