精英家教网 > 高中数学 > 题目详情
5.若A⊆B,A⊆C,B={0,1,2,3,4,5,6},C={0,2,4,6,8,10},则这样的A的个数为(  )
A.4B.15C.16D.32

分析 利用A⊆B,A⊆C,可得A⊆(B∩C),求出B∩C,即可得出结论.

解答 解:∵A⊆B,A⊆C,
∴A⊆(B∩C),
∵B={0,1,2,3,4,5,6},C={0,2,4,6,8,10},
∴B∩C={0,2,4,6},
∴A的个数为16,
故选C.

点评 本题考查集合的运算与关系,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.正数数列{an}的前n项和为Sn,已知对于任意的n∈Z+,均有Sn与1正的等比中项等于an与1的等差中项.
(1)试求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,数列{bn}的前n项和为Tn,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l过点A(1,2),且法向量为(1,-3),则直线l的一般式方程为x-3y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对任意实数m,圆x2+y2-2mx-4my+6m-2=0恒过定点,则其坐标为(1,1),或($\frac{1}{5}$,$\frac{7}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式x>$\frac{9}{x}$的解是(-3,0)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{b-2a}{c}$=$\frac{{cos({A+C})}}{cosC}$.
(1)求角C的大小;
(2)若c=2,求△ABC面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算 
(1)(lg2)2+lg2•lg50+lg25;
(2)(2$\frac{1}{4}}$)${\;}^{\frac{3}{2}}}$+0.1-2+(${\frac{1}{27}}$)${\;}^{-\frac{1}{3}}}$+2π0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了抽样调查的方式:从学生中随机抽取20名同学进行抽查.这种抽样的方法是(  )
A.分层抽样B.简单随机抽样C.系统抽样D.复杂随机抽样

查看答案和解析>>

同步练习册答案