精英家教网 > 高中数学 > 题目详情

【题目】某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:

1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);

2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望

3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.

【答案】1;(2)分布列见详解,期望为;(3)余下所有零件不用检验,理由见详解.

【解析】

1)计算的频率,并且与进行比较,判断中位数落在的区间,然后根据频率的计算方法,可得结果.

2)计算位于之外的零件中随机抽取个的总数,写出所有可能取值,并计算相对应的概率,列出分布列,计算期望,可得结果.

3)计算整箱的费用,根据余下零件个数服从二项分布,可得余下零件个数的期望值,然后计算整箱检验费用与赔偿费用之和的期望值,进行比较,可得结果.

1)尺寸在的频率:

尺寸在的频率:

所以可知尺寸的中位数落在

假设尺寸中位数为

所以

所以这个零件尺寸的中位数

2)尺寸在的个数为

尺寸在的个数为

的所有可能取值为1234

所以的分布列为

3)二等品的概率为

如果对余下的零件进行检验则整箱的检验费用为

(元)

余下二等品的个数期望值为

如果不对余下的零件进行检验,

整箱检验费用与赔偿费用之和的期望值为

(元)

所以,所以可以不对余下的零件进行检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,平面ABCD平面BDEGAB中点.

求证:平面BCF

,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个放置在水平桌面上的密闭直三棱柱容器,如图1为正三角形,,里面装有体积为的液体,现将该棱柱绕旋转至图2.在旋转过程中,以下命题中正确的个数是(

①液面刚好同时经过三点;

②当平面与液面成直二面角时,液面与水平桌面的距离为

③当液面与水平桌面的距离为时,与液面所成角的正弦值为.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三数学奥林匹克竞赛集训队的一次数学测试成绩的茎叶图(图1)和频率分布直方图(图2)都受到不同程度的破坏,可见部分如图所示,据此解答如下问题.

(1)求该集训队总人数及分数在[80,90)之间的频数;

(2)计算频率分布直方图中[80,90)的矩形的高;

(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调增区间;

2)当时,求函数在区间上的最大值;

3)对任意,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】密云某商场举办春节优惠酬宾赠券活动,购买百元以上单件商品可以使用优惠劵一张,并且每天购物只能用一张优惠券.一名顾客得到三张优惠券,三张优惠券的具体优惠方式如下:

优惠券1:若标价超过50元,则付款时减免标价的10%

优惠券2:若标价超过100元,则付款时减免20元;

优惠券3:若标价超过100元,则超过100元的部分减免18%

如果顾客需要先用掉优惠券1,并且使用优惠券1比使用优惠券2、优惠券3减免的都多,那么你建议他购买的商品的标价可以是__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人独立地对某一技术难题进行攻关.甲能攻克的概率为,乙能攻克的概率为,丙能攻克的概率为

1)求这一技术难题被攻克的概率;

2)现假定这一技术难题已被攻克,上级决定奖励万元.奖励规则如下:若只有一人攻克,则此人获得全部奖金万元;若只有两人攻克,则奖金奖给此二人,每人各得万元;若三人均攻克,则奖金奖给此三人,每人各得万元.设乙、丙两人得到的奖金数的和为X,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四面体中,在平面内,点是线段的中点,在该四面体绕旋转的过程中,直线与平面所成角的余弦值不可能是(

A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设函数,求函数的极值;

2)若上存在一点,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案