【题目】正四面体中,在平面内,点是线段的中点,在该四面体绕旋转的过程中,直线与平面所成角的余弦值不可能是( )
A.B.C.D.1
科目:高中数学 来源: 题型:
【题目】某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:
(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);
(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;
(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱个. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四面体底面的中心为,的重心为.是内部一动点(包括边界),满足,,不共线且点到点的距离与到平面的距离相等.
(1)证明:平面;
(2)若,求四面体体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市销售某种商品,据统计,该该商品每日的销售量(单位:千克)与销售价格(单位:元/千克,其中)满足:当时,(,为常数);当时,,已知当销售价格为6元/千克时,每日售出该商品170千克.
(1)求,的值,并确定关于的函数解析式;
(2)若该商品的销售成本为3元/千克,试确定销售价格的值,使店铺每日销售该商品所获利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:
(1)估计该批次产品长度误差绝对值的数学期望;
(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的展开式中第5项与第7项的二项数系数相等,且展开式的各项系数之和为1024,则下列说法正确的是( )
A.展开式中奇数项的二项式系数和为256
B.展开式中第6项的系数最大
C.展开式中存在常数项
D.展开式中含项的系数为45
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的普通方程和曲线的直角坐标方程;
(2)已知点是曲线上的动点,求点到曲线的最小距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com