精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=lnx-bx+c,f(x)在点(1,f(1))处的切线方程为x+y+4=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调区间.

分析 (Ⅰ)由求导公式、法则求出f′(x),根据题意和导数的几何意义求出b的值,将(1,f(1))代入方程x+y+4=0求出f(1),代入解析式列出方程求出c,即可求出函数f(x)的解析式;
(Ⅱ)由(I)求出函数的定义域和f′(x),求出f′(x)>0和f′(x)<0的解集,即可求出函数f(x)的单调区间.

解答 解:(Ⅰ)由题意得,f′(x)=$\frac{1}{x}$-b,则f′(1)=1-b,
∵在点(1,f(1))处的切线方程为x+y+4=0,
∴切线斜率为-1,则1-b=-1,得b=2,
将(1,f(1))代入方程x+y+4=0,
得:1+f(1)+4=0,解得f(1)=-5,
∴f(1)=-b+c=-5,将b=2代入得c=-3,
故f(x)=lnx-2x-3;
(Ⅱ)依题意知函数的定义域是(0,+∞),且f′(x)=$\frac{1}{x}$-2,
令f′(x)>0得,0<x<$\frac{1}{2}$,令f′(x)<0得,x>$\frac{1}{2}$,
故f(x)的单调增区间为(0,$\frac{1}{2}$),单调减区间为($\frac{1}{2}$,+∞).

点评 本题考查求导公式和法则,导数的几何意义,利用导数研究函数的单调性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=an•bn(n∈N*),求{cn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,网格纸上每个小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为$9+18\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在极坐标系中,曲线C:ρ=$\frac{2}{cosθ+2sinθ}$,A,B是曲线C上的两点,O为极点,∠AOB=$\frac{π}{2}$,则△AOB面积的最小值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=4x-2x+1-3,则f(x)<0的解集为{x|x<log23}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点,直线OC与平面A1BD所成的角为α,则sin α的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.正方体ABCD-A1B1C1D1中,E,F分别为AB,AA1的中点,则EF与A1C1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设等差数列{an}前n项和为Sn,公差d≠0.
(1)若a1=1,且数列{$\frac{{S}_{n}}{{a}_{n}}$}是等差数列,求数列{an}的通项公式;
(2)证明:1,$\sqrt{3}$,2不可能是等差数列{an}中的三项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.[重点中学做]定义:[x]表示不超过x的最大整数,例如[1.5]=1,[-0.5]=-1,给出下列结论:
①函数y=[sinx]是奇函数;
②函数y=[sinx]是周期为π的周期函数;
③函数y=[sinx]-cosx不存在零点;
④函数y=[sinx]-[cosx]的值域为[-1,0,1].
其中正确结论是(  )
A.①③B.②④C.③④D.②③

查看答案和解析>>

同步练习册答案