精英家教网 > 高中数学 > 题目详情

已知向量,其中
(Ⅰ)若,求的值;
(Ⅱ)若,求的值域.

(Ⅰ);(Ⅱ)的值域为

解析试题分析:(Ⅰ)由已知条件,得,由此可求得的值,由于为特殊值,从而可求得的值,进而求得的值(也可利用平方关系求得的值);(Ⅱ)首先列出函数的表达式,利用三角函数的平方关系及三角函数辅助角公式,将其化为一个复合角的三角函数式:,最后利用整体思想来求函数的值域.
试题解析:(Ⅰ),                    2分
求得.                                   3分
,                               5分
.                               6分
(Ⅱ)        8分
,                10分
,即函数的值域为.                      12分
考点:1.向量共线的充要条件;2.三角函数求值;3.三角函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点在角α的终边上,点在角β的终边上,且
(1)求
(2)求P,Q的坐标并求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知f(x)=sinx+2sin()cos().(1)若f(α)=,α∈(-,0),求α的值;
(2)若sin,x∈(,π),求f(x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.
(I)若,求边c的值;
(II)设,求角A的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角的顶点在原点,始边与轴的正半轴重合,终边经过点.
(Ⅰ)求的值;
(Ⅱ)若函数,求函数在区间上的取值范围. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数(A>0,>0)的最小值为-1,其图象相邻两个对称中心之间的距离为.
(1)求函数的解析式
(2)设,则,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且其图象的相邻对称轴间的距离为.
(I)求在区间上的值域;
(II)在锐角中,若的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以角为钝角的的三角形内角的对边分别为,且垂直.
(1)求角的大小;
(2)求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,的图象关于直线对称,其中为常数,且
(1)求函数的最小正周期;
(2)若的图象经过点,求函数上的值域.

查看答案和解析>>

同步练习册答案