精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= x3+ax2+bx+c有极值点x1 , x2(x1>x2),f(x1)=x1 , 则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数是

【答案】3
【解析】解:对f(x)求导得:f'(x)=x2+2ax+b;
f(x)有极值点x1 , x2 对应于f'(x)=0的两个零点;
关于x的方程[f(x)]2+2af(x)+b=0,则有f(x)=x1 或 f(x)=x2
由图形知y=x1 与f(x)有2个交点;
∵x1>x2 , 故y=x2 与f(x)有1个交点;
所以答案是:3

【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3 x2+logax,(a>0且a≠1)为定义域上的增函数,f'(x)是函数f(x)的导数,且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)设函数 ,且g(x1)+g(x2)=0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCD﹣A1B1C1D1中,AC∩BD=O,E是线段B1C(含端点)上的一动点,则 ①OE⊥BD1
②OE∥面A1C1D;
③三棱锥A1﹣BDE的体积为定值;
④OE与A1C1所成的最大角为90°.
上述命题中正确的个数是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,A,B,C角所对的边分别为a,b,c,且 = sinC.
(1)求∠C;
(2)若 =2,求△ABC面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先将函数y=2sinx的图象纵坐标不变,横坐标压缩为原来一半,再将得到的图象向左平移 个单位,则所得图象的对称轴可以为(
A.x=﹣
B.x=
C.x=﹣
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex ax2(a∈R).
(1)当a≤1时,求f(x)的单调区间;
(2)当x∈(0,+∞)时,y=f′(x)的图象恒在y=ax3+x﹣(a﹣1)x的图象上方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和Sn=3n2+2n+1.
(1)求{an}的通项公式;
(2)令bn=an2n , 求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x在区间[2,3]上单调递增,则实数a的取值范围是(
A.[﹣2,+∞)
B.[﹣3,+∞)
C.[0,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向右平移 个周期后,所得图象对应的函数为f(x),则函数f(x)的单
调递增区间(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案