精英家教网 > 高中数学 > 题目详情
一次考试中,要求考生从试卷上的10个题目中任选3道题解答,其中6道甲类题,4道乙类题.
(Ⅰ)求考生所选题目都是甲类题的概率;
(Ⅱ)已知一考生所选的三道题目中有2道甲类题,1道乙类题,设该考生答对每道甲类题的概率都是
3
5
,答对每道乙类题的概率都是
4
5
,且各题答对与否相互独立,用X表示该考生答对题的个数,求X的分布列与数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:概率与统计
分析:(1)利用古典概型概率计算公式能求出考生所选题目都是甲类题的概率.
(2)X所有的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.
解答: 解:(1)设事件A=“考生所选题目都是甲类题”,
则P(A)=
C
3
6
C
3
10
=
1
6

(2)X所有的可能取值为0,1,2,3,
P(X=0)=
C
0
2
(
3
5
)0(
2
5
)2
1
5
=
4
125

P(X=1)=
C
1
2
(
3
5
)(
2
5
)•
1
5
+
C
0
2
(
3
5
)0(
2
5
)2
4
5
=
28
125

P(X=2)=
C
2
2
(
3
5
)2(
2
5
)0
1
5
+
C
1
2
(
3
5
)(
2
5
)•
4
5
=
57
125

P(X=3)=
C
2
2
(
3
5
)2(
2
5
)0
4
5
=
36
125

∴X的分布列为:
 X 0 1 3
 P 
4
125
28
125
 
 
57
125
36
125
 
∴EX=
24
125
+1×
28
125
+2×
57
125
+3×
36
125
=2.
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设随机变量X~B(2,P),随机变量Y~B(3,P),若P(X≥1)=
5
9
,则P(Y≥1)等于(  )
A、
19
27
B、
5
9
C、
7
9
D、
5
27

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1a2a3=-8,则a2等于(  )
A、-
8
3
B、-2
C、±
8
3
D、±2

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如图的2×2列联表.
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计305050
则至少有(  )的把握认为喜爱打篮球与性别有关.附参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2>k00.100.050.0250.0100.0050.001
k02.7063.8413.0046.6157.78910.828
A、95%B、99%
C、99.5%D、99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求证:平面BCD⊥平面ABC;
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求直线BE与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C经过坐标原点和点(6,0),且与直线y=1相切.
(Ⅰ)求圆C的方程;
(Ⅱ)已知点Q(2,-2),从圆C外一点P向该圆引切线PT,T为切点,且|PT|=|PQ|,证明:点P恒在一条定直线上,并求出定直线l的方程;
(Ⅲ)若(Ⅱ)中直线l与x轴的交点为F,点M,N是直线x=6上两动点,且以M,N为直径的圆E过点F,判断圆E是否过除F点外的其它定点?若存在,求出定点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足以下两个条件:
①对任意的x,y∈R,f(x-y+1)=f x)f(y)+f(1-x)f(1-y);
②f(x)在区间[0,1]上单调递增;
(1)求f(0);
(2)求证:f(x)是图象关于直线x=1对称的奇函数;
(3)求不等式的解集f(x)≥
1
2
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞,某学校文学社从男女生中各抽取100名学生调查对莫言作品的了解程度,对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.调查结果如下表:
男生女生合计
非常了解80m140
一般了解n4060
合计100100200
参考数据:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.500.400.252.150.100.020.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(1)求m,n的值;
(2)在犯错误的概率下不超过多少的前提下认为“对莫言作品非常了解与性别有关”?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=2cosθ+2sinθ,直线l的参数方程是
x=-
3
5
t+4
y=
4
5
t
(t为参数).
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与x轴的交点是M,点N是曲线C上的一个动点,求MN的最大值.

查看答案和解析>>

同步练习册答案