精英家教网 > 高中数学 > 题目详情

已知函数f(x)=log4(4x+1)+kx(k∈R)为偶函数.
(1)求k的值;
(2)若方程f(x)=log4(a·2x-a)有且只有一个根,求实数a的取值范围.

(1)   (2) a的取值范围为{a|a>1或a=-2-2}

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某地方政府在某地建一座桥,两端的桥墩相距m米,此工程只需建两端桥墩之间的桥面和桥墩(包括两端的桥墩).经预测,一个桥墩的费用为256万元,相邻两个桥墩之间的距离均为x,且相邻两个桥墩之间的桥面工程费用为(1+)x万元,假设所有桥墩都视为点且不考虑其他因素,记工程总费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=1280米时,需要新建多少个桥墩才能使y最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax2+bx+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数上不具有单调性,求实数的取值范围;
(2)若.
(ⅰ)求实数的值;
(ⅱ)设,当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)的二次项系数为a,且不等式f(x)>2x的解集为(-1,3).
(1)若函数g(x)=xf(x)在区间内单调递减,求a的取值范围;
(2)当a=-1时,证明方程f(x)=2x3-1仅有一个实数根;
(3)当x∈[0,1]时,试讨论|f(x)+(2a-1)x+3a+1|≤3成立的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;
(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,.
(Ⅰ)证明:
(Ⅱ)求证:在数轴上,介于之间,且距较远;
(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;
(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.

查看答案和解析>>

同步练习册答案