精英家教网 > 高中数学 > 题目详情
10.下面四个图象中,至少有一个是函数f(x)=$\frac{1}{3}$x3+ax2+(a2-1)x+1(其中a∈R)的导函数f′(x)的图象,在f(-1)等于(  )
A.-$\frac{1}{3}$B.$\frac{5}{3}$C.$\frac{1}{3}$或-$\frac{5}{3}$D.-$\frac{1}{3}$或$\frac{5}{3}$

分析 由f(x)解析式求出导函数f′(x)解析式,分析得到导函数图象可能为①或③,根据函数图象分别求出a的值,确定出f(x)解析式,即可求出f(-1)的值.

解答 解:由f(x)=$\frac{1}{3}$x3+ax2+(a2-1)x+1,得到f′(x)=x2+2ax+a2-1,
可得导函数图象可能为①,即对称轴为y轴,-a=0,
解得:a=0,此时f(x)=$\frac{1}{3}$x3-x+1,即f(-1)=-$\frac{1}{3}$+2=$\frac{5}{3}$;
可得导函数图象可能为③,即f′(0)=0,
∴a2-1=0,即a=1或-1,
当a=1时,f′(x)=x2+2x,不合题意;
当a=-1时,f(x)=$\frac{1}{3}$x3-x2+1,符合题意,此时f(-1)=-$\frac{1}{3}$-1+1=-$\frac{1}{3}$,
综上,f(-1)=$\frac{5}{3}$或-$\frac{1}{3}$,
故选:D.

点评 此题考查了导数的运算,二次函数的图象与性质,熟练掌握导数的运算是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若α∈($\frac{π}{4}$,$\frac{π}{2}$),x=(sinα)${\;}^{lo{g}_{α}cosα}$,y=(cosα)${\;}^{lo{g}_{α}sinα}$,则x与y的大小关系为(  )
A.x>yB.x<yC.x=yD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的图象(部分)如图所示.
(1)求函数f(x)的解析式; 
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且a=2,f(A)=1,求△ABC的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-aex,a∈R(e为自然对数的底数).
(1)若曲线y=f(x)在x=1处的切线与直线y=2x+4平行,求实数a的值;
(2)求函数f(x)的单调区间;
(3)若函数f(x)有两个零点x1,x2,且x1<x2.求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=lnx+\frac{a}{x-1}$,(a>0)
(Ⅰ)当$a=\frac{1}{30}$时,求函数f(x)的单调区间;
(Ⅱ)当$a≥\frac{1}{2}$,x∈(1,+∞)时,求证:$lnx+\frac{a}{x-1}>1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=x-cosx,在△ABC中,满足A>B,则(  )
A.f(sinA)>f(cosB)B.f(sinA)<f(sinB)C.f(cosA)<f(cosB)D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)在R上的导函数为f′(x),若f(x)<f′(x)恒成立,且f(0)=2,则不等式f(x)>2ex的解集是(  )
A.(2,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足an+1=an-1(n∈N+),且a2+a4+a6=18,则a5的值为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2sinx(sinx+cosx)
(I)求f(x)的对称中心的坐标和单调递增区间;
(Ⅱ)在锐角三角形ABC中,已知f(A)=2,角A,B,C所对的边分别为a,b,c,且a=2,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案