分析 (Ⅰ)求出函数的定义域,求出函数的导数,从而求出函数的单调区间即可;
(Ⅱ)问题转化为2(x-1)lnx+1>2(x-1)当x>1时成立,设g(x)=2(x-1)lnx-2(x-1)+1(x>1),通过判断函数的单调性,求出g(x)的最小值,从而证明结论.
解答 解:(Ⅰ)函数f(x)的定义域为(0,1)∪(1,+∞),
当$a=\frac{1}{30}$时,$f'(x)=\frac{{(x-\frac{5}{6})(x-\frac{6}{5})}}{{x{{(x-1)}^2}}}$,…(3分)
令f′(x)>0,得:$x>\frac{6}{5}$或$x<\frac{5}{6}$,所以函数单调增区间为:$(0,\frac{5}{6})$,$(\frac{6}{5},+∞)$,
令f′(x)<0,得:$\frac{5}{6}<x<\frac{6}{5}$,所以函数单调减区间为:$(\frac{5}{6},1)$,$(1,\frac{6}{5})$…(5分)
(Ⅱ)若证$lnx+\frac{a}{x-1}>1$,$(a≥\frac{1}{2},x>1)$成立,
只需证:$lnx+\frac{a}{x-1}≥lnx+\frac{1}{2(x-1)}>1$,
即:2(x-1)lnx+1>2(x-1)当x>1时成立…(6分)
设g(x)=2(x-1)lnx-2(x-1)+1(x>1),
∴$g'(x)=2(lnx-\frac{1}{x})$,显然g′(x)在(1,+∞)内是增函数,
且g′(1)=-2<0,$g'(2)=2(ln2-\frac{1}{2})>0$,
∴g′(x)=0在(1,2)内有唯一零点x0,使得:$ln{x_0}-\frac{1}{x_0}=0$,
且当x∈(1,x0),g′(x)<0;
当x∈(x0,+∞),g′(x)>0.
∴g(x)在(1,x0)递减,在(x0,+∞)递增…(10分),
g(x)min=g(x0)=2(x0-1)(lnx0-1)+1=$2({{x_0}-1})({\frac{1}{x_0}-1})+1$=$5-2({x_0}+\frac{1}{x_0})$,
∵x0∈(1,2),∴$2<{x_0}+\frac{1}{x_0}<\frac{5}{2}$,
∴g(x)min>0,∴$lnx+\frac{a}{x-1}>1$成立…(12分)
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.
科目:高中数学 来源: 题型:解答题
| 编 号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 零件数x/个 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| 加工时间y/分 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q是假命题 | B. | p∧q是真命题 | C. | p∧(¬q)是真命题 | D. | p∨(¬q)是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{1}{3}$或-$\frac{5}{3}$ | D. | -$\frac{1}{3}$或$\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com