精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(sin2x+cos2x)2-2sin22x.
(Ⅰ)求f(x)的最小正周期; 
(Ⅱ)当x∈[-
π
8
π
8
]时,求y=f(x)的值域.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(Ⅰ)利用二倍角的正弦、余弦公式、两角和与差的正弦公式化简函数解析式,化为一个角的正弦函数,由最小正周期公式求解;
(Ⅱ)由x的范围求出4x+
π
4
的范围,再由正弦函数得性质求出f(x)的最值,再求出函数f(x)的值域.
解答: 解:(I)f(x)=(sin2x+cos2x)2-2sin22x=1+2sin2xcos2x-(1-cos4x)
=sin4x+cos4x=
2
sin(4x+
π
4
)

∴T=
4
=
π
2

则f(x)的最小正周期是
π
2

(II)由(I)得f(x)=
2
sin(4x+
π
4
)

∵x∈[-
π
8
π
8
],∴4x+
π
4
∈[-
π
4
4
],
4x+
π
4
=-
π
4
时,此时x=-
π
8
f(x)min=
2
×(-
2
2
)
=-1,
4x+
π
4
=
π
2
时,此时x=
π
16
f(x)m,ax=
2

则f(x)的值域是[-1,
2
].
点评:本题考查二倍角的正弦、余弦公式、两角和与差的正弦公式,以及正弦函数的性质,熟练掌握公式及性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),抛物线上纵坐标为1的点到焦点的距离为p,过点M(1,0)作斜率为k的直线l交抛物线于A,B两点,A点关于x轴的对称点为C,直线BC交x轴于Q点.
(Ⅰ)求p的值;
(Ⅱ)探究:当k变化时,点Q是否为定点?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为不等于0的实数,函数f(x)=(x2+ax)ex在(-∞,0)上有且仅有一个极值点x0
(Ⅰ)求a的取值范围;
(Ⅱ)(ⅰ)求证:-2<x0<-1;
(ⅱ)设g(x)=
a
x+1
,若x1∈(-∞,0),x2∈[0,+∞),记|f(x1)-g(x2)|的最大值为M,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:方程
x2
2
+
y2
m
=1表示双曲线;q:函数y=x2+2mx+1与x轴无公共点,若¬p和p∧q都是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,AC∩BD=H.沿EF将△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED.

(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:(提示:设OH=x)
(ⅰ)求四棱锥P-BDEF的体积;
(ⅱ)若点Q在线段AP上,试探究:直线OQ与平面E所成角是否一定大于或等于45°?并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+ax2+(2a-1)x
(1)当a=3时,求函数f(x)的极值;
(2)求函数f(x)的单调区间;
(3)在(1)的条件下,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)),证明:线段MN与曲线f(x)存在异于M、N的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=16内有一点P(2,2),过点P作直线l交圆C于A,B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AO是四面体ABCD的高,M是AO的中点,连接BM、CM、DM.求证:BM、CM、DM两两垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos2x-2sinx的最小值是
 

查看答案和解析>>

同步练习册答案