精英家教网 > 高中数学 > 题目详情
已知空间4个球,它们的半径均为2,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为(  )
A、
6
-2
B、
6
-
2
C、
10
-3
D、2
2
-2
考点:球的体积和表面积
专题:空间位置关系与距离
分析:将这四个球的球心连接成一个正四面体,并根据四球外切,得到四面体的棱长为2,求出外接球半径,由于这四个球之间有一个小球和这四个球都外切,则小球的球心与四面体的球体重合,进而再由小球与其它四球外切,球心距(即正四面体外接球半径)等于大球半径与小球半径之和,得到答案.
解答: 解:连接四个球的球心,得到一个棱长为4的正四面体,则该正四面体的外接球半径为
6

若这四个球之间有一个小球和这四个球都外切,则小球的球心与四面体的球体重合,
因为由小球与其它四球外切,所以球心距(即正四面体外接球半径)等于大球半径与小球半径之和,
所以所求小球的半径为
6
-2.
故选A.
点评:本题考查棱锥的结构特征,球的结构特征,其中根据已知条件求出四个半径为1的球球心连接后所形成的正四面体的棱长及外接球半径的长是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)计算(要求写出计算过程):
(-2)2
+
3-8
+lg0.01+5log52

(2)已知x+x-1=7,求下列各式的值:
①x2+x-2
x
1
2
+x-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求出下列各式的值
(1)(-2013)0+8-0.25×
4
1
2
+(
32
×
3
)6-(2-
3
2
)
4
3

(2)已知a+a-1=7,求值①a2+a-2; ②a-
1
2
+a
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线kx-y-2=0与曲线
1-(y-1)2
=|x|-1
有两个不同的交点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-sinx,0≤x≤
π
2
3x+
1
2
,x<0
,若f(x0)=-
1
2
,则x0=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,4)作直线l,直线l与x,y的正半轴分别交于A,B两点,O为原点,
(Ⅰ)△ABO的面积为9,求直线l的方程;
(Ⅱ)若△ABO的面积为S,求S的最小值并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

为积极配合省运会志愿者招募工作,自贡一中拟成立由3名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,3名女同学共5名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的3名同学中恰有1名男同学的概率;
(2)求当选的3名同学中至少有2名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

对大于或等于2的自然数m的n次方幂有如下分解方式:
22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.
根据上述分解规律,若n2=1+3+5+…+19,m3(m∈N*)的分解中最小的数是21,则m+n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以墙为一边,用篱笆围成长方形的场地,并用平行于一边的篱笆隔开(如图),
已知篱笆总长为50米,写出以边长x表示场地面积y的函数关系式,并求出
函数的定义域及面积的最大值.

查看答案和解析>>

同步练习册答案