精英家教网 > 高中数学 > 题目详情
对大于或等于2的自然数m的n次方幂有如下分解方式:
22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.
根据上述分解规律,若n2=1+3+5+…+19,m3(m∈N*)的分解中最小的数是21,则m+n的值为
 
考点:归纳推理
专题:等差数列与等比数列
分析:根据等差数列的通项公式以及数列的求和公式即可求出m,n的值.
解答: 解:依题意得 n2=1+3+5+…+19=
10×(1+19)
2
=
10×20
2
=100,
∴n=10.
∵m3(m∈N*)的分解中最小的数是21,
∴m3=21m+
m(m-1)
2
×2
=m2+20m,
即m2-m-20=0,
∴(m-5)(m+4)=0,
∴m=5或m=-4.
又 m∈N*
∴m=5,
∴m+n=15.
故答案为:15.
点评:本题主要考查归纳推理的应用,利用等差数列的通项公式和求和公式是解决本题的关键,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈[-1,0]时,f(x)的最小值为(  )
A、-
1
8
B、-
1
4
C、0
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间4个球,它们的半径均为2,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为(  )
A、
6
-2
B、
6
-
2
C、
10
-3
D、2
2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}满足a1+a4=10,a2+a5=20,则{an}的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

长为2、4的线段在AB、CD分别在x轴、y轴上滑动,且A、B、C、D四点共圆,求此动圆圆心P的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax-1的一个零点大于1,另一个零点小于1,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n(n∈N*),把数列{an}的各项排列成如图所示的三角形数阵:记M(s,t)表示该数阵中第s行的第t个数,则数阵中的偶数2010对应于(  )
A、M(45,15)
B、M(45,25)
C、M(46,16)
D、M(46,25)

查看答案和解析>>

科目:高中数学 来源: 题型:

利用自然对数的底数e(e=2.71828…)构建三个基本初等函数y=ex,y=lnx,y=
e
x
(x>0)
.探究发现,它们具有以下结论:三个函数的图象形成的图形(如图)具有“对称美”;图形中阴影区A的面积为1等.M,N是函数图象的交点.
(Ⅰ)根据图形回答下列问题:
①写出图形的一条对称轴方程;
②说出阴影区B的面积;
③写出M,N的坐标.
(Ⅱ)设f(x)=ex-lnx+
e
x
,证明:对任意的正实数x1,x2,都有
f(x1)+f(x2)
2
≥f(
x1+x2
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

lim
△x→0
f(x0+△x)-f(x0)
△x
=f′(x0)
,其中△x(  )
A、恒取正值或恒取负值
B、有时可以取0
C、恒取正值
D、可以取正值和负值,但不能取0

查看答案和解析>>

同步练习册答案