精英家教网 > 高中数学 > 题目详情
7.设曲线F1(x,y)=0和F2(x,y)=0的交点为P,那么曲线F1(x,y)-F2(x,y)=0必定(  )
A.经过P点B.经过原点C.经过P点和原点D.不一定经过P点

分析 P是曲线F1xy)=0和F2xy)=0的交点,所以F1x0y0)=0,F2x0y0)=0.由此得F1x0y0)-F2x0y0)=0,即可得出结论.

解答 解:设P点的坐标为(x0y0),则
因为P是曲线F1xy)=0和F2xy)=0的交点,所以F1x0y0)=0,F2x0y0)=0.
由此得F1x0y0)-F2x0y0)=0,故曲线F1xy)-F2xy)=0经过点P
故选:A.

点评 本题考查曲线与方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.证明:$\frac{1}{2n+1}$<$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$•…•$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$(其中n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.当k为什么实数时,方程组$\left\{\begin{array}{l}{4x+3y=60}\\{kx+(k+2)y=60}\end{array}\right.$的解满足x>y>0的条件?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.5005×50065006-5006×50055005的值是(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知Sn是数列{an}的前n项和,a1=1,an+1=$\frac{n+2}{n}$Sn(n∈N*).
(1)求证:数列{$\frac{{a}_{n}}{n+1}$}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设某种产品的需求关系为3q+4p=100,其中q是产量,p是该产品的价格,求销售10件该产品时的总收入和平均收入.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.猜测(1-$\frac{4}{1}$)(1-$\frac{4}{9}$)…[1一$\frac{4}{(2n-1)^{2}}$]对n∈N且n≥1成立的-个表达式为 (  )
A.-$\frac{n+2}{n}$B.$\frac{2n+1}{2n-1}$C.$-\frac{2n+1}{2n-1}$D.-$\frac{n+1}{n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在如图中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确的吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆的焦点为F1(0,-2),F2(0,2),椭圆上的点到两个焦点的距离之和为8,求椭圆的标准方程.

查看答案和解析>>

同步练习册答案