精英家教网 > 高中数学 > 题目详情
(12分)如图,在四棱锥P-ABCD中,底面
ABCD是矩形,PA⊥平面ABCD,AP=AB,
BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求四棱锥E-ABCD的体积V;
(Ⅲ)求二面角E-AD-C的大小.
 

(1)略
(2)
(3) 45°

解:(Ⅰ)∵E,F分别是PB,PC的中点
∴EF∥BC      ……………………1分
∵BC∥AD
∴EF∥AD      ……………………2分
∵AD平面PAD,EF平面PAD
∴EF∥平面PAD ……………………4分
(Ⅱ)(法1)∵AP=AB,BP=2,AP⊥平面ABCD
∴AB=AP=   ……………………5分
∵S矩形ABCD=AB·BC=2
∴VP-ABCD=S矩形ABCD·PA=…6分
∴V=VP-ABCD=  ………………8分
(Ⅱ)(法2)连接EA,EC,ED,过E作EG∥PA交AB
于点G
则EG⊥平面ABCD,且EG=PA ………5分
∵AP=AB,PAB=90°,BP=2
∴AP=AB=,EG=      ………6分
∵S矩形ABCD=AB·BC
=2
∴V=S矩形ABCD·EG
=       ……………………8分
(Ⅲ)∵PA⊥平面ABCD
∴AD⊥PA
∵ABCD是矩形
∴AD⊥AB
∵AP∩AB=A
∴AD⊥平面ABP
∵AE平面ABP
∴AD⊥AE
∴∠BAE为所求二面角的平面角……11分
∵△ABP是等腰直角三角形,E是PB中点
∴所求二面角为45° ………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形ABCD是边长为1的正方形,,且MD=NB=1,E为BC的中点
求异面直线NE与AM所成角的余弦值
在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥中,底面为矩形,平面⊥平面,,的中点,求证:
(1)∥平面
(2)平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图6,正方形所在平面与圆所在平面相交于
线段为圆的弦,垂直于圆所在平面,
垂足是圆上异于的点,
,圆的直径为9.
(1)求证:平面平面
(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,一几何体的三视图如下:则这个几何体是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


如图,正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:

①直线AM与CC1是相交直线;  
②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
已知斜三棱柱在底面上的射影恰为的中点又知

(1)求证平面
(2)求到平面的距离;
(3)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
在四棱锥P-ABCD中,底ABCD是矩形, PA⊥面ABCD, AP="AB=2," BC=, E、F、G分别为AD、PC、PD的中点.
(1)求证: FG∥面ABCD
(2)求面BEF与面BAP夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图(1)已知矩形中,分别是的中点,点上,且,把沿着翻折,使点在平面上的射影恰为点(如图(2))。
(1)求证:平面平面
(2)求二面角的大小.

图(1)                    图(2)

查看答案和解析>>

同步练习册答案