精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,四边形ABCD是边长为1的正方形,,且MD=NB=1,E为BC的中点
求异面直线NE与AM所成角的余弦值
在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由

(1)
(2)
解析:(1)在如图,以D为坐标原点,建立空间直角坐标……1分

依题意,得。……2分
……3分
,……5分
所以异面直线所成角的余弦值为……6分
(2)假设在线段上存在点,使得平面.
,
可设
.
平面,得                即
……………10分
所以…….11分
经检验,当时,平面.
故线段上存在点,使得平面,此时……12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在四棱锥P-ABCD中,底面
ABCD是矩形,PA⊥平面ABCD,AP=AB,
BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求四棱锥E-ABCD的体积V;
(Ⅲ)求二面角E-AD-C的大小.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱锥的四个顶点均在半径为3的球面上,且PAPBPC两两互相垂直,则三棱锥的侧面积的最大值为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,凸多面体中,平面平面的中点.
(1)求证:平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,平面四边形关于直线对称,
沿折起(如图二),使二面角的余弦值等于.对于图二,
(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(1)求证:AE//平面DCF;
(2)当AB的长为何值时,二面角A-EF-C的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.

(1)求证:CA1⊥C1P;
(2)当AP为何值时,二面角C1-PB1-A1的大小为?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)正方体的棱长为的交点,上一点,且
(1)求证:平面; (2)求异面直线所成角的余弦值;
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,.

(Ⅰ)求证:∥平面
(Ⅱ)求证:.

查看答案和解析>>

同步练习册答案