精英家教网 > 高中数学 > 题目详情
14.已知甲、乙、丙3类产品共1200件,且甲、乙、丙三类产品的数量之比为3:4:5,现采用分层抽样的方法抽取60件,则乙类产品抽取的件数是20.

分析 根据甲乙丙的数量之比,利用分层抽样的定义即可得到结论.

解答 解:∵甲、乙、丙三类产品,其数量之比为3:4:5,
∴从中抽取120件产品进行质量检测,则乙类产品应抽取的件数为60×$\frac{4}{3+4+5}$=20,
故答案为:20.

点评 本题主要考查分层抽样的定义和应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.不等式$\frac{1-x}{x+1}≤0$的解集是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-1,1]D.(-∞,-1)∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}中,a3=4,a5=8,则a11=(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知平面ABEF⊥平面ABCD,四边形ABEF是正方形,四边形ABCD是菱形,且BC=2,∠BAD=60°,点G,H分别为边CD,DA的中点,点M是线段BE上的动点.
(Ⅰ)求证:GH⊥平面BDM
(Ⅱ)求三棱锥D-MGH的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z1=$\frac{2a}{a-1}+({{a^2}-1})$i,z2=m+(m-1)i(i是虚数单位,a,m∈R)
(1)若z1是实数,求a的值;
(2)在(1)的条件下,若|z1|<|z2|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$|{\overrightarrow a}|=\sqrt{2},|{\overrightarrow b}|=2$,且$({\overrightarrow a-\overrightarrow b})⊥\overrightarrow a$,则$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆C:(x-6)2+(y-8)2=1和两点A(-m,0),B(m,0)(m>0),若对圆上任意一点P,都有∠APB<90°,则m的取值范围是(  )
A.(9,10)B.(1,9)C.(0,9)D.(9,11)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=b+asinx(a<0)的最大值为-1,最小值为-5,
(1)求a,b的值;    
(2)求y=tan(3a+b)x的最小正周期.

查看答案和解析>>

同步练习册答案