精英家教网 > 高中数学 > 题目详情
2.在△ABC中,点D满足$\overrightarrow{AD}$=$\frac{3}{4}\overrightarrow{AB}$,P为△ABC内一点,且满足$\overrightarrow{AP}$=$\frac{3}{10}\overrightarrow{AB}$+$\frac{2}{5}\overrightarrow{AC}$,则$\frac{{S}_{△APD}}{{S}_{△ABC}}$=(  )
A.$\frac{3}{10}$B.$\frac{9}{20}$C.$\frac{6}{35}$D.$\frac{9}{35}$

分析 可作出图形,并作$\overrightarrow{AE}=\frac{3}{10}\overrightarrow{AB},\overrightarrow{AF}=\frac{2}{5}\overrightarrow{AC}$,以AE,AF为邻边作平行四边形AEPF,从而有$AE=\frac{3}{10}AB,PE=\frac{2}{5}AC$,这样即可求出${S}_{△APE}=\frac{6}{50}{S}_{△ABC}$,而同理可以求得${S}_{△PDE}=\frac{9}{50}{S}_{△ABC}$,从而便可求得$\frac{{S}_{△APD}}{{S}_{△ABC}}$的值.

解答 解:如图,作$\overrightarrow{AE}=\frac{3}{10}\overrightarrow{AB},\overrightarrow{AF}=\frac{2}{5}\overrightarrow{AC}$,以AE,AF为邻边作平行四边形AEPF;

∵E在AB上,$AE=\frac{3}{10}AB,PE=\frac{2}{5}AC$,且PE∥AC;
∴${S}_{△APE}=\frac{3}{10}•\frac{2}{5}{S}_{△ABC}=\frac{6}{50}{S}_{△ABC}$;
又$AE=\frac{3}{10}AB,AD=\frac{3}{4}AB$,∴$ED=\frac{9}{20}AB$,且$PE=\frac{2}{5}AC$,PE∥AC;
∴${S}_{△PDE}=\frac{9}{20}•\frac{2}{5}{S}_{△ABC}=\frac{9}{50}{S}_{△ABC}$;
∴${S}_{△APD}=(\frac{6}{50}+\frac{9}{50}){S}_{△ABC}=\frac{3}{10}{S}_{△ABC}$;
∴$\frac{{S}_{△APD}}{{S}_{△ABC}}=\frac{3}{10}$.
故选:A.

点评 考查向量数乘的几何意义,向量加法的平行四边形法则,以及三角形的面积公式,相似三角形对应边的比例关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点($\frac{2}{3},\frac{{2\sqrt{6}}}{3}$),且其左焦点坐标为(-1,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆的右焦点作两条相互垂直的直线l,m,其中l交椭圆于M,N,m交椭圆于P,Q,求|MN|+|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过直线x=2上一点P作圆:x2+y2=1的两条切线PA,PB,则kPA•kPB的最小值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设△ABC的内角A,B,C所对边的长分别是a,b,c.且c2=2a2+b2,可导函数f(x)满足xf′(x)<2f(x),则(  )
A.sin2A•f(sinB)<sin2B•f(sinA)B.sin2A•f(sinA)>sin2B•f(sinB)
C.cos2B•f(sinA)<sin2A•f(cosB)D.cos2B•f(sinA)>sin2A•f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ax3-3x+2016的图象在(1,f(1))处的切线平行于x轴,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于函数f(x),若存在区间A=[m,n](m<n),使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,已知函数f(x)=x2-2ax+b(a,b∈R).
(I)若b=0,a=1,g(x)=|f(x)|是“可等域函数”,求函数g(x)的“可等域区间”;
(Ⅱ)若区间[1,a+1]为f(x)的“可等域区间”,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则ω=2,φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义在R上的函数f(x),导函数为f′(x),满足f(x)+f′(x)>0,比较f(2)与ef(3)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知平面上三点A、B、C满足|$\overrightarrow{AB}$|=$\sqrt{3}$,|$\overrightarrow{BC}$|=$\sqrt{5}$,|$\overrightarrow{CA}$|=2$\sqrt{2}$,则$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$的值等于-8.

查看答案和解析>>

同步练习册答案