精英家教网 > 高中数学 > 题目详情
19.若函数y=x2-4px-2的图象过点A(tanα,1),及B(tanβ,1),求sin2(α+β).

分析 利用已知条件求出α+β的正切函数,利用同角三角函数基本关系式化简求解即可.

解答 解:因为函数y=x2-4px-2的图象经过M(tanα,1),N(tanβ,1)两点.
所以可得1=tan2α-4ptanα-2,1=tan2β-4ptanβ-2
所以tanα,tanβ是x2-4px-3=0的两根
所以tanα+tanβ=4p,tanαtanβ=-3,
所以tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=p
sin2(α+β)=2sin(α+β)cos(α+β)=$\frac{2sin(α+β)cos(α+β)}{si{n}^{2}(α+β)+co{s}^{2}(α+β)}$=$\frac{2tan(α+β)}{ta{n}^{2}(α+β)+1}$=$\frac{2p}{{p}^{2}+1}$.

点评 本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.作出函数y=|x2-2x-1|与y=x2-2|x|-1的图象,并写出其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正数x,y满足x2+4y2+x+2y≤2-4xy,则$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.记a=logsin1cos1,b=logsin1tan1,c=logcos1sin1,d=logcos1tan1,则四个数的大小关系是(  )
A.a<c<b<dB.c<d<a<bC.b<d<c<aD.d<b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在复平面内,复数6+5i,-2+3i对应的向量分别是$\overrightarrow{OA}$和$\overrightarrow{OB}$,若复数z与$\overrightarrow{OA}$+$\overrightarrow{OB}$的积为实数,且|z|=$\sqrt{5}$,则z=(  )
A.1-2iB.-1+2iC.1-2i,-1+2iD.1+2i,1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.曲线y=x+2与y=x2所围成的封闭图形的面积s=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A、B、C的对边分别是a、b、c,且b2+c2-a2=bc.
(1)求A;
(2)若a=$\sqrt{2}$,sinBsinC=sin2A,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知α,β∈($\frac{π}{2}$,π),且sinα+cosα=a,cos(β-α)=$\frac{3}{5}$.
(1)若a=$\frac{1}{3}$,求sinαcosα+tanα-$\frac{1}{3cosα}$的值;
(2)若a=$\frac{7}{13}$,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A={x|-1<x≤2},B={x|x≤3,x∈Z},A∩B=(  )
A.{0,1,2,3}B.{1,2}C.{0,1,2}D.{-1,0,1,2}

查看答案和解析>>

同步练习册答案