精英家教网 > 高中数学 > 题目详情
4.曲线y=x+2与y=x2所围成的封闭图形的面积s=$\frac{9}{2}$.

分析 联立方程组求出积分的上限和下限,结合积分的几何意义即可得到结论联立方程组求出积分的上限和下限,结合积分的几何意义即可得到结论.

解答 解:作出两条曲线对应的封闭区域如图:
由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=x+2}\end{array}\right.$得x2=x+2,即x2-x-2=0,
解得x=-1或x=2,
则根据积分的几何意义可知所求的几何面积S=${∫}_{-1}^{2}$(x+2-x2)dx=($\frac{1}{3}$x3+$\frac{1}{2}$x2+2x)|${\;}_{-1}^{2}$=$\frac{9}{2}$,
故答案为:

点评 本题主要考查积分的应用,作出对应的图象,求出积分上限和下限,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.运行如图所示的程序框图,则输出的结果S为(  )
A.-1B.0C.$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的外接球半径为(  )
A.$\frac{15}{2}$cmB.$\frac{15}{4}$cmC.$\frac{5\sqrt{41}}{2}$cmD.$\frac{5\sqrt{41}}{4}$cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知中心在原点,焦点F1、F2在x轴上的双曲线经过点P(4,2),△PF1F2的内切圆与x轴相切于点Q(2$\sqrt{2}$,0),则该双曲线的离心率为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数y=x2-4px-2的图象过点A(tanα,1),及B(tanβ,1),求sin2(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(1)若p:?x∈R,x2+x+1<0,则非p:?x∈R,x2+x+1<0
(2)若p∨q为真命题,则p∧q也为真命题
(3)“函数f(x)为奇函数”是“f(0)=0”的既不充分也不必要条件
(4)命题“若x2-3x+2=0,则x=1”的否命题为真命题
(5)若(a+1)${\;}^{\frac{1}{2}}$<(3-2a)${\;}^{\frac{1}{2}}$,则a的取值范围是a<$\frac{2}{3}$
以上命题正确的是(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知非零向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$,$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$=2$\overrightarrow{e_1}$-$\overrightarrow{e_2}$,$\overrightarrow b$=k$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,给出以下结论:
①若$\overrightarrow{e_1}$与$\overrightarrow{e_2}$不共线,$\overrightarrow a$与$\overrightarrow b$共线,则k=-2;
②若$\overrightarrow{e_1}$与$\overrightarrow{e_2}$不共线,$\overrightarrow a$与$\overrightarrow b$共线,则k=2;
③存在实数k,使得$\overrightarrow a$与$\overrightarrow b$不共线,$\overrightarrow{e_1}$与$\overrightarrow{e_2}$共线;
④不存在实数k,使得$\overrightarrow a$与$\overrightarrow b$不共线,$\overrightarrow{e_1}$与$\overrightarrow{e_2}$共线.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin($\frac{π}{3}$x+φ),x∈R,A>0,0<φ<$\frac{π}{2}$.y=f(x)的部分图象如图所示,P、Q 分别为该图象的最高点和最低点,点P的坐标为(1,A).点R的坐标为(1,0),∠PRQ=$\frac{3π}{4}$.
(1)求f(x)的最小正周期以及解析式.
(2)用五点法画出f(x)在x∈[-$\frac{1}{2}$,$\frac{11}{2}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$\sqrt{1-sin2}$+$\sqrt{1+sin2}$=2sin1.

查看答案和解析>>

同步练习册答案