| A. | $\frac{15}{2}$cm | B. | $\frac{15}{4}$cm | C. | $\frac{5\sqrt{41}}{2}$cm | D. | $\frac{5\sqrt{41}}{4}$cm |
分析 由三视图可知:原几何体是一个四棱锥P-ABCD,其底面是一个边长为2的正方形,其高PH=2.据此即可计算出外接球的半径.
解答
解:由三视图可知:原几何体是一个四棱锥S-ABCD,其底面是一个边长为20的正方形,其高为20.
设O为外接球的球心,OE=x,则OA=$\sqrt{{x}^{2}+(10\sqrt{2})^{2}}$=OS=$\sqrt{100+(20-x)^{2}}$
⇒x=$\frac{15}{2}$,
∴其外接球的半径R=$\frac{5\sqrt{41}}{2}$.
故选:C.
点评 本题考查了由三视图求几何体外接球的半径,根据三视图判断几何体的结构特征并求得外接球的半径是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{81}{4}$π | B. | $\frac{9}{4}$π | C. | $\frac{9}{2}$π | D. | $\frac{81}{16}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<c<b<d | B. | c<d<a<b | C. | b<d<c<a | D. | d<b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{5}$ | C. | $\sqrt{6}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com