精英家教网 > 高中数学 > 题目详情
10.已知正数x,y满足x2+4y2+x+2y≤2-4xy,则$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$.

分析 正数x,y满足x2+4y2+x+2y≤2-4xy,变形为(x+2y)2+(x+2y)-2≤0,可得0<x+2y≤1.因此$\frac{1}{x}+\frac{1}{y}$≥$\frac{x+2y}{x}$+$\frac{x+2y}{y}$,化简利用基本不等式的性质即可得出.

解答 解:∵正数x,y满足x2+4y2+x+2y≤2-4xy,
∴(x+2y)2+(x+2y)-2≤0,
解得0<x+2y≤1.
则$\frac{1}{x}+\frac{1}{y}$≥$\frac{x+2y}{x}$+$\frac{x+2y}{y}$=3+$\frac{2y}{x}$+$\frac{x}{y}$≥3+2$\sqrt{2}$,当且仅当x=$\sqrt{2}$y=$\sqrt{2}$-1时取等号.
∴$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$,
故答案为:3+2$\sqrt{2}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+$\frac{25}{1+t}$(t的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是(  )
A.1+25ln 5B.8+25ln $\frac{11}{3}$C.4+25ln 5D.4+50ln 2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若方程x2-4x+3+m=0在x∈(0,3)时有唯一实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知在三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=$\frac{π}{2}$,△PAC为正三角形且边长为4,则该三棱锥外接球O的表面积S=$\frac{64}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设球Γ的球心为O,平面α截Γ所得的圆为C1,经过球心O的平面β截Γ所得的圆为C2,若圆C1与C2的公共弦长为球Γ的半径,平面α与平面β的夹角为30°,O到平面α的距离为$\sqrt{3}$,则球Γ的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的外接球半径为(  )
A.$\frac{15}{2}$cmB.$\frac{15}{4}$cmC.$\frac{5\sqrt{41}}{2}$cmD.$\frac{5\sqrt{41}}{4}$cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的中心为O,左焦点为F,P是双曲线上的一点$\overrightarrow{OP}$•$\overrightarrow{PF}$=0且4$\overrightarrow{OP}$•$\overrightarrow{OF}$=3${\overrightarrow{OF}^2}$,则该双曲线的离心率是(  )
A.$\frac{{\sqrt{13}+1}}{3}$B.$\frac{{\sqrt{7}+\sqrt{3}}}{3}$C.$\sqrt{7}$+$\sqrt{3}$D.$\frac{{\sqrt{10}+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数y=x2-4px-2的图象过点A(tanα,1),及B(tanβ,1),求sin2(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C的对边分别是a、b、c,若b2+c2=2a2,则角A的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案