精英家教网 > 高中数学 > 题目详情
20.在△ABC中,角A,B,C的对边分别是a、b、c,若b2+c2=2a2,则角A的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 由b2+c2=2a2求出a2,由余弦定理求出cosA,代入化简后由不等式求出cosA的范围,由A的范围和余弦函数的性质求出A的范围,即可求出A的最大值.

解答 解:由b2+c2=2a2,得a2=$\frac{1}{2}$(b2+c2),
∴由余弦定理得,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{b}^{2}+{c}^{2}}{4bc}$≥$\frac{2bc}{4bc}=\frac{1}{2}$,
当且仅当b=c时取等号,则cosA$≥\frac{1}{2}$,
∵0<A<π,∴0<A≤$\frac{π}{3}$,则角A的最大值是$\frac{π}{3}$,
故选:C.

点评 本题考查余弦定理,余弦函数的性质,以及利用不等式求最值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知正数x,y满足x2+4y2+x+2y≤2-4xy,则$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A、B、C的对边分别是a、b、c,且b2+c2-a2=bc.
(1)求A;
(2)若a=$\sqrt{2}$,sinBsinC=sin2A,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知α,β∈($\frac{π}{2}$,π),且sinα+cosα=a,cos(β-α)=$\frac{3}{5}$.
(1)若a=$\frac{1}{3}$,求sinαcosα+tanα-$\frac{1}{3cosα}$的值;
(2)若a=$\frac{7}{13}$,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知几何体的三视图(单位:cm)如图所示,则该几何体的内切球的半径为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}+1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A、B、C所对边的长为a、b、c,设AD为BC边上的高,且AD=a,则$\frac{b}{c}$+$\frac{c}{b}$的最大值是(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直角△ABC中,C=$\frac{π}{2}$,AC=2.若D为AC中点,且sin∠ABD=$\frac{1}{3}$,则BC=$\sqrt{2}$;若D为AC上靠近点C的三等分点,则∠ABD的最大值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A={x|-1<x≤2},B={x|x≤3,x∈Z},A∩B=(  )
A.{0,1,2,3}B.{1,2}C.{0,1,2}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将函数y=sin2x(x∈R)图象上所有的点向左平移$\frac{π}{6}$个单位长度,所得图象的函数解析式为y=sin(2x+$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案