精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=-x2+ax+b,且f(4)=-3.
(1)若函数f(x)在区间[2,+∞)上递减,求实数b的取值范围;
(2)若函数f(x)的图象关于直线x=1对称,且关于x的方程f(x)=log2m在区间[-3,3]上有解,求m的最大值.

分析 (1)利用函数值以及对称轴与单调区间的关系,列出不等式求解即可.
(2)利用对称轴以及函数值,求出a,b,利用二次函数的闭区间上的最值,求解即可.

解答 解:(1)∵函数f(x)在区间[2,+∞)上递减,∴$\frac{a}{2}≤2$,解得a≤4,
又f(4)=-3,∴b=-4a+13,
∵a≤4,∴b≥-3.
(2)∵$\left\{\begin{array}{l}\frac{a}{2}=1\\-16+4a+b=-3\end{array}\right.$解得$\left\{\begin{array}{l}a=2\\ b=5.\end{array}\right.$
∴f(x)=-x2+2x+5=-(x-1)2+6,x∈[-3,3],
∴f(x)min=f(-3)=-10,f(x)max=f(1)=6,
∴f(x)在[-3,3]上的值域为[-10,6],
∴log2m∈[-10,6],即m∈[2-10,26],
∴m的最大值为26=64.

点评 本题考查二次函数的简单性质的应用,对称轴与单调区间的关系,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.A={x|x是小于9的质数},B={x|x是小于9的正奇数},则A∩B的子集个数是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定义域上的单调增函数,则a的取值范围是(  )
A.[3-$\sqrt{3}$,2)B.$(\sqrt{5}-1,\sqrt{3})$C.$(1,\sqrt{3})$D.$(1,3-\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x>0,则函数${y_1}=-{a^{-x}}$与y2=logax(a>0,且a≠1)在同一坐标系上的部分图象只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若f(log2a)+f(2log${\;}_{\frac{1}{4}}$a)≥2f(-1),则实数a的取值范围是[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x),g(x)分别是R上的偶函数和奇函数,则下列结论正确的是(  )
A.f(x)+g(x)是奇函数B.f(x)-g(x)是偶函数C.f(x)•g(x)是奇函数D.f(x)•g(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,且S3=9,a2a4=21,数列{bn}满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}})$,若${b_n}<\frac{1}{10}$,则n的最小值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式|x|<2x-1的解集为{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=-$\frac{2}{3}$x3+x2+4x+5的极大值为$\frac{35}{3}$.

查看答案和解析>>

同步练习册答案